|
import numpy as np |
|
import os |
|
import argparse |
|
from tqdm import tqdm |
|
import torch |
|
import torch.nn as nn |
|
from skimage import img_as_ubyte |
|
import utils |
|
|
|
from basicsr.models.archs.mairunet_arch import MaIRUNet |
|
import scipy.io as sio |
|
|
|
parser = argparse.ArgumentParser(description='Real Image Denoising') |
|
|
|
parser.add_argument('--input_dir', default='/xlearning/boyun/datasets/RealDN/val/', type=str, help='Directory of validation images') |
|
parser.add_argument('--result_dir', default='/xlearning/boyun/codes/MaIR/realDenoising/results/Real_Denoising/SIDD/', type=str, help='Directory for results') |
|
parser.add_argument('--weights', default='/xlearning/boyun/codes/MaIR/realDenoising/experiments/MaIR_RealDN/models/MaIR_RealDN.pth', type=str, help='Path to weights') |
|
parser.add_argument('--save_images', action='store_true', help='Save denoised images in result directory') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
opt_str = r""" |
|
type: MaIRUNet |
|
inp_channels: 3 |
|
out_channels: 3 |
|
dim: 48 |
|
num_blocks: [4, 6, 6, 8] |
|
num_refinement_blocks: 4 |
|
|
|
ssm_ratio: 2.0 |
|
flp_ratio: 4.0 |
|
mlp_ratio: 1.5 |
|
bias: False |
|
dual_pixel_task: False |
|
|
|
img_size: 128 |
|
scan_len: 4 |
|
batch_size: 8 |
|
dynamic_ids: False |
|
""" |
|
|
|
import yaml |
|
x = yaml.safe_load(opt_str) |
|
|
|
s = x.pop('type') |
|
|
|
|
|
result_dir_mat = os.path.join(args.result_dir, 'mat') |
|
os.makedirs(result_dir_mat, exist_ok=True) |
|
|
|
if args.save_images: |
|
result_dir_png = os.path.join(args.result_dir, 'png') |
|
os.makedirs(result_dir_png, exist_ok=True) |
|
|
|
model_restoration = MaIRUNet(**x) |
|
|
|
device = torch.device('cuda:7') |
|
|
|
|
|
|
|
checkpoint = torch.load(args.weights, map_location=device) |
|
model_restoration.load_state_dict(checkpoint['params']) |
|
print("===>Testing using weights: ",args.weights) |
|
model_restoration.cuda() |
|
model_restoration = nn.DataParallel(model_restoration) |
|
model_restoration.eval() |
|
|
|
|
|
filepath = os.path.join(args.input_dir, 'ValidationNoisyBlocksSrgb.mat') |
|
img = sio.loadmat(filepath) |
|
Inoisy = np.float32(np.array(img['ValidationNoisyBlocksSrgb'])) |
|
Inoisy /=255. |
|
restored = np.zeros_like(Inoisy) |
|
with torch.no_grad(): |
|
for i in tqdm(range(40)): |
|
for k in range(32): |
|
noisy_patch = torch.from_numpy(Inoisy[i,k,:,:,:]).unsqueeze(0).permute(0,3,1,2).cuda() |
|
restored_patch = model_restoration(noisy_patch) |
|
restored_patch = torch.clamp(restored_patch,0,1).cpu().detach().permute(0, 2, 3, 1).squeeze(0) |
|
restored[i,k,:,:,:] = restored_patch |
|
|
|
if args.save_images: |
|
save_file = os.path.join(result_dir_png, '%04d_%02d.png'%(i+1,k+1)) |
|
utils.save_img(save_file, img_as_ubyte(restored_patch)) |
|
|
|
|
|
sio.savemat(os.path.join(result_dir_mat, 'Idenoised.mat'), {"Idenoised": restored,}) |
|
|