Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Import the core logic from your "normal inference file"
|
6 |
+
from NoiseFilter.MaIR.inference_runner import MaIR_Upsampler
|
7 |
+
|
8 |
+
# --- Global model cache for performance ---
|
9 |
+
# This dictionary will store loaded models to avoid reloading on every API call.
|
10 |
+
model_cache = {}
|
11 |
+
|
12 |
+
def get_model(model_name):
|
13 |
+
"""Loads a model into the cache if it's not already there."""
|
14 |
+
if model_name not in model_cache:
|
15 |
+
print(f"Loading model {model_name} into cache...")
|
16 |
+
model_cache[model_name] = MaIR_Upsampler(model_name=model_name)
|
17 |
+
return model_cache[model_name]
|
18 |
+
|
19 |
+
# --- API Function ---
|
20 |
+
def inference_api(image, model_name):
|
21 |
+
"""
|
22 |
+
This is the function that the API will call.
|
23 |
+
It takes a NumPy array and a model name string as input.
|
24 |
+
"""
|
25 |
+
if image is None:
|
26 |
+
# Gradio handles this by not running, but good practice for raw API calls.
|
27 |
+
raise ValueError("No image provided.")
|
28 |
+
|
29 |
+
upsampler = get_model(model_name)
|
30 |
+
output_image = upsampler.process(image)
|
31 |
+
return output_image
|
32 |
+
|
33 |
+
# --- Create the Gradio Interface (for API generation) ---
|
34 |
+
# We define a minimal interface. The primary goal is API exposure.
|
35 |
+
interface = gr.Interface(
|
36 |
+
fn=inference_api,
|
37 |
+
inputs=[
|
38 |
+
gr.Image(type="numpy", label="Input Image"),
|
39 |
+
gr.Dropdown(
|
40 |
+
choices=['MaIR-SRx4', 'MaIR-SRx2', 'MaIR-CDN-s50'],
|
41 |
+
value='MaIR-SRx4',
|
42 |
+
label="Select Model"
|
43 |
+
),
|
44 |
+
],
|
45 |
+
outputs=gr.Image(type="numpy", label="Output Image"),
|
46 |
+
title="MaIR: Image Restoration API",
|
47 |
+
description="API for MaIR models. Use the '/api' endpoint for programmatic access."
|
48 |
+
)
|
49 |
+
|
50 |
+
# Launch the app. This will start the web server and create the API.
|
51 |
+
interface.launch()
|