import torch import sys import os current_dir = os.path.dirname(os.path.abspath(__file__)) parent_dir = os.path.abspath(os.path.join(current_dir, '..')) sys.path.append(parent_dir) from model_zoo.mair import buildMaIR_Small, buildMaIR_Tiny, buildMaIR_SR from model_zoo.mairu import buildMaIRU, buildMaIRU_motiondeblur from analysis.utils_fvcore import FLOPs fvcore_flop_count = FLOPs.fvcore_flop_count def get_parameter_number(model): total_num = sum(p.numel() for p in model.parameters()) trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) return {'Total': total_num/1e6, 'Trainable': trainable_num/1e6} if __name__ == '__main__': device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # SR_x2 | SR_x3 | SR_x4 | lightSR_S_x2 | lightSR_S_x3 | lightSR_S_x4 | lightSR_T_x2 | lightSR_T_x3 | lightSR_T_x4 | md | dh task = 'lightSR_S_x2' if task.startswith('SR') or task.startswith('lightSR'): H=720 W=1280 if task.endswith('x2'): scale=2 elif task.endswith('x3'): scale=3 elif task.endswith('x4'): scale=4 if task.startswith('SR'): init_model = buildMaIR_SR(upscale=scale).to(device) elif task.startswith('lightSR_S'): init_model = buildMaIR_Small(upscale=scale).to(device) elif task.startswith('lightSR_T'): init_model = buildMaIR_Tiny(upscale=scale).to(device) elif task.startswith('md'): # motion deblur H=128 W=128 scale=1 init_model = buildMaIRU_motiondeblur().to(device) elif task.startswith('dh'): # image dehazing H=256 W=256 scale=1 init_model = buildMaIRU().to(device) print(get_parameter_number(init_model)) with torch.no_grad(): FLOPs.fvcore_flop_count(init_model, input_shape=(3, H//scale,W//scale))