# Code Implementation of the MaIR Model import math import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint import torch.nn.functional as F from functools import partial from typing import Optional, Callable from timm.models.layers import DropPath, to_2tuple, trunc_normal_ try: from mamba_main.mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref except Exception: from mamba_main.mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref selective_scan_fn = selective_scan_ref from einops import rearrange, repeat import time import sys sys.path.append('/xlearning/boyun/codes/MaIR') try: from basicsr.archs.shift_scanf_util import mair_ids_generate, mair_ids_scan, mair_ids_inverse, mair_shift_ids_generate from basicsr.utils.registry import ARCH_REGISTRY except: from shift_scanf_util import mair_ids_generate, mair_ids_scan, mair_ids_inverse, mair_shift_ids_generate NEG_INF = -1000000 class ShuffleAttn(nn.Module): def __init__(self, in_features, out_features, hidden_features=None, group=4, act_layer=nn.GELU, input_resolution=(64,64)): super().__init__() self.group = group self.input_resolution = input_resolution self.in_features = in_features self.out_features = out_features self.gating = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_features, out_features, groups=self.group, kernel_size=1, stride=1, padding=0), nn.Sigmoid() ) def channel_shuffle(self, x): batchsize, num_channels, height, width = x.data.size() assert num_channels % self.group == 0 group_channels = num_channels // self.group x = x.reshape(batchsize, group_channels, self.group, height, width) x = x.permute(0, 2, 1, 3, 4) x = x.reshape(batchsize, num_channels, height, width) return x def channel_rearrange(self,x): batchsize, num_channels, height, width = x.data.size() assert num_channels % self.group == 0 group_channels = num_channels // self.group x = x.reshape(batchsize, self.group, group_channels, height, width) x = x.permute(0, 2, 1, 3, 4) x = x.reshape(batchsize, num_channels, height, width) return x def forward(self, x): x = self.channel_shuffle(x) x = self.gating(x) x = self.channel_rearrange(x) return x def flops(self): flops = 0 H, W = self.input_resolution # nn.AdaptiveAvgPool2d(1), flops += H * W * self.in_features # nn.Conv2d(in_features, out_features, groups=self.group, kernel_size=1, stride=1, padding=0), flops += H * W * self.in_features * self.out_features // self.group # nn.Sigmoid() flops += H * W * self.out_features * 4 return flops class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., input_resolution=(64,64)): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.in_features = in_features self.hidden_features = hidden_features self.input_resolution = input_resolution self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x def flops(self): flops = 0 H, W = self.input_resolution flops += 2 * H * W * self.in_features * self.hidden_features flops += H * W * self.hidden_features return flops class VMM(nn.Module): def __init__( self, d_model, d_state=16, d_conv=3, expand=2., dt_rank="auto", dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0, dt_init_floor=1e-4, dropout=0., conv_bias=True, bias=False, device=None, dtype=None, input_resolution=(64, 64), **kwargs, ): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.d_model = d_model self.d_state = d_state self.d_conv = d_conv self.expand = expand self.d_inner = int(self.expand * self.d_model) self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank self.input_resolution = input_resolution self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs) self.conv2d = nn.Conv2d( in_channels=self.d_inner, out_channels=self.d_inner, groups=self.d_inner, bias=conv_bias, kernel_size=d_conv, padding=(d_conv - 1) // 2, **factory_kwargs, ) self.act = nn.SiLU() self.x_proj = ( nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), ) self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K=4, N, inner) del self.x_proj self.dt_projs = ( self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs), self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs), self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs), self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs), ) self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K=4, inner, rank) self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K=4, inner) del self.dt_projs self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) # (K=4, D, N) self.Ds = self.D_init(self.d_inner, copies=4, merge=True) # (K=4, D, N) self.selective_scan = selective_scan_fn self.out_norm = nn.LayerNorm(self.d_inner) self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs) self.dropout = nn.Dropout(dropout) if dropout > 0. else None self.gating = ShuffleAttn(in_features=self.d_inner*4, out_features=self.d_inner*4, group=self.d_inner) @staticmethod def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4, **factory_kwargs): dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs) # Initialize special dt projection to preserve variance at initialization dt_init_std = dt_rank ** -0.5 * dt_scale if dt_init == "constant": nn.init.constant_(dt_proj.weight, dt_init_std) elif dt_init == "random": nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std) else: raise NotImplementedError # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max dt = torch.exp( torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min) ).clamp(min=dt_init_floor) # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): dt_proj.bias.copy_(inv_dt) # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit dt_proj.bias._no_reinit = True return dt_proj @staticmethod def A_log_init(d_state, d_inner, copies=1, device=None, merge=True): # S4D real initialization A = repeat( torch.arange(1, d_state + 1, dtype=torch.float32, device=device), "n -> d n", d=d_inner, ).contiguous() A_log = torch.log(A) # Keep A_log in fp32 if copies > 1: A_log = repeat(A_log, "d n -> r d n", r=copies) if merge: A_log = A_log.flatten(0, 1) A_log = nn.Parameter(A_log) A_log._no_weight_decay = True return A_log @staticmethod def D_init(d_inner, copies=1, device=None, merge=True): # D "skip" parameter D = torch.ones(d_inner, device=device) if copies > 1: D = repeat(D, "n1 -> r n1", r=copies) if merge: D = D.flatten(0, 1) D = nn.Parameter(D) # Keep in fp32 D._no_weight_decay = True return D def forward_core(self, x: torch.Tensor, mair_ids, x_proj_bias: torch.Tensor=None, ): # print(x.shape) C=360 B, C, H, W = x.shape L = H * W D, N = self.A_logs.shape K, D, R = self.dt_projs_weight.shape K=4 # print("hello") xs = mair_ids_scan(x, mair_ids[0]) x_dbl = F.conv1d(xs.reshape(B, -1, L), self.x_proj_weight.reshape(-1, D, 1), bias=(x_proj_bias.reshape(-1) if x_proj_bias is not None else None), groups=K) dts, Bs, Cs = torch.split(x_dbl.reshape(B, K, -1, L), [R, N, N], dim=2) dts = F.conv1d(dts.reshape(B, -1, L), self.dt_projs_weight.reshape(K * D, -1, 1), groups=K) xs = xs.float().view(B, -1, L) dts = dts.contiguous().float().view(B, -1, L) # (b, k * d, l) Bs = Bs.float().view(B, K, -1, L) # (b, k, d_state, l) Cs = Cs.float().view(B, K, -1, L) # (b, k, d_state, l) out_y = self.selective_scan( xs, dts, -torch.exp(self.A_logs.float()).view(-1, self.d_state), Bs, Cs, self.Ds.float().view(-1), z=None, delta_bias=self.dt_projs_bias.float().view(-1), delta_softplus=True, return_last_state=False, ).view(B, K, -1, L) assert out_y.dtype == torch.float return mair_ids_inverse(out_y, mair_ids[1], shape=(B, -1, H, W)) #B, C, L def forward(self, x: torch.Tensor, mair_ids, **kwargs): B, H, W, C = x.shape xz = self.in_proj(x) x, z = xz.chunk(2, dim=-1) x = x.permute(0, 3, 1, 2).contiguous() x = self.act(self.conv2d(x)) y = self.forward_core(x, mair_ids) assert y.dtype == torch.float32 y = y * self.gating(y) y1, y2, y3, y4 = torch.chunk(y, 4, dim=1) y = y1 + y2 + y3 + y4 y = y.permute(0, 2, 3, 1).contiguous() y = self.out_norm(y) y = y * F.silu(z) y = self.out_proj(y) if self.dropout is not None: y = self.dropout() return y def flops_forward_core(self, H, W): flops = 0 # flops of x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight) in Core flops += 4 * (H * W) * self.d_inner * (self.dt_rank + self.d_state * 2) # flops of dts = torch.einsum("b k r l, k d r -> b k d l", dts.view(B, K, -1, L), self.dt_projs_weight) # dt_rank=12, d_inner=360 flops += 4 * (H * W) * self.dt_rank * self.d_inner # print(flops/1e6, (4 * H * W) * (self.d_state * self.d_state * 2)/1e6) # 610.46784 M 8.388608 M # Flops of discretization flops += (4 * H * W) * (self.d_state * self.d_state * 2) # Flops of Vmamba selective_scan # # h' = Ah(t) + Bx(t) # flops += (4 * H * W) * (self.d_state * self.d_state + self.d_inner * self.d_state) # # y = Ch(t) + DBx(t) # flops += (4 * H * W) * (self.d_inner * self.d_inner + self.d_inner * self.d_state) # 640*360*36*90*16/1e9=11.94G flops += 4 * 9 * H * W * self.d_inner * self.d_state # print(4 * 9 * H * W * self.d_inner * self.d_state/1e9) return flops def flops(self): flops = 0 H, W = self.input_resolution # flop of in_proj flops += H * W * self.d_model * self.d_inner * 2 # flops of x = self.act(self.conv2d(x)) flops += H * W * self.d_inner * 3 * 3 + H * W * self.d_inner # print(H, W, self.d_state, self.d_inner) flops += self.flops_forward_core(H, W) # 64 64 16 360 flops += self.gating.flops() # y = y1 + y2 + y3 + y4 flops += 4 * H * W * self.d_inner # flops of y = self.out_norm(y) flops += H * W * self.d_inner # flops of y = y * F.silu(z) flops += 2 * H * W * self.d_inner # flops of out = self.out_proj(y) flops += H * W * self.d_inner * self.d_model return flops class RMB(nn.Module): def __init__( self, hidden_dim: int = 0, drop_path: float = 0, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), attn_drop_rate: float = 0, d_state: int = 16, ssm_ratio: float = 2., input_resolution= (64, 64), is_light_sr: bool = False, shift_size=0, mlp_ratio=1.5, **kwargs, ): super().__init__() self.ln_1 = norm_layer(hidden_dim) self.self_attention = VMM(d_model=hidden_dim, d_state=d_state,expand=ssm_ratio,dropout=attn_drop_rate, input_resolution=input_resolution, **kwargs) self.drop_path = DropPath(drop_path) self.skip_scale= nn.Parameter(torch.ones(hidden_dim)) mlp_hidden_dim = int(hidden_dim * mlp_ratio) self.conv_blk = Mlp(in_features=hidden_dim, hidden_features=mlp_hidden_dim,input_resolution=input_resolution) self.ln_2 = nn.LayerNorm(hidden_dim) self.skip_scale2 = nn.Parameter(torch.ones(hidden_dim)) self.hidden_dim = hidden_dim self.input_resolution = input_resolution self.shift_size = shift_size def forward(self, input, mair_ids, x_size): # x [B,HW,C] B, L, C = input.shape input = input.view(B, *x_size, C).contiguous() # [B,H,W,C] x = self.ln_1(input) if self.shift_size > 0: x = input*self.skip_scale + self.drop_path(self.self_attention(x, (mair_ids[2], mair_ids[3]))) else: x = input*self.skip_scale + self.drop_path(self.self_attention(x, (mair_ids[0], mair_ids[1]))) x = x*self.skip_scale2 + self.conv_blk(self.ln_2(x)) x = x.reshape(B, -1, C) return x def flops(self): flops = 0 H, W = self.input_resolution # flops of norm1 self.ln_1 -> layer_norm1 flops += self.hidden_dim * H * W # flops of SS2D flops += self.self_attention.flops() # flops of input * self.skip_scale and residual flops += self.hidden_dim * H * W * 2 # flops of norm2 self.ln_2 -> layer_norm2 flops += self.hidden_dim * H * W # flops of MLP flops += self.conv_blk.flops() # flops of input * self.skip_scale2 and residual flops += self.hidden_dim * H * W * 2 return flops class BasicLayer(nn.Module): """ The Basic MaIR Layer in one Residual Mamba Group Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, drop_path=0., d_state=16, ssm_ratio=2., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, is_light_sr=False, scan_len=4, mlp_ratio=2 ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.ssm_ratio=ssm_ratio self.mlp_ratio=mlp_ratio self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList() for i in range(depth): self.blocks.append(RMB( hidden_dim=dim, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=nn.LayerNorm, attn_drop_rate=0, d_state=d_state, ssm_ratio=self.ssm_ratio, input_resolution=input_resolution, is_light_sr=is_light_sr, shift_size=0 if (i % 2 == 0) else scan_len // 2, mlp_ratio=self.mlp_ratio) ) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x, mair_ids, x_size): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x, mair_ids, x_size) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}' def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops @ARCH_REGISTRY.register() class MaIR(nn.Module): r""" Mamba-based Image Restoration Network (MaIR) A PyTorch implementation of : `MaIR: A Locality- and Continuity-Preserving Mamba for Image Restoration`. Args: img_size (int | tuple(int)): Input image size. Default 64 patch_size (int | tuple(int)): Patch size. Default: 1 in_chans (int): Number of input image channels. Default: 3 embed_dim (int): Patch embedding dimension. Default: 96 d_state (int): num of hidden state in the state space model. Default: 16 ssm_ratio (int): enlarge ratio in MaIR Module mlp_ratio (int): enlarge ratio in the hidden space of MLP depths (tuple(int)): Depth of each RSSG drop_rate (float): Dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False upscale: Upscale factor. 2/3/4 for image SR, 1 for denoising img_range: Image range. 1. or 255. upsampler: The reconstruction reconstruction module. 'pixelshuffle'/None resi_connection: The convolutional block before residual connection. '1conv'/'3conv' scan_len: Stripe width of the NSS """ def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=60, depths=(6, 6, 6, 6), drop_rate=0., d_state=16, ssm_ratio=1.5, drop_path_rate=0.1, norm_layer=nn.LayerNorm, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., upsampler='pixelshuffledirect', resi_connection='1conv', dynamic_ids=False, scan_len=8, mlp_ratio=2, **kwargs): super(MaIR, self).__init__() num_in_ch = in_chans num_out_ch = in_chans num_feat = 64 self.img_range = img_range if in_chans == 3: rgb_mean = (0.4488, 0.4371, 0.4040) self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) else: self.mean = torch.zeros(1, 1, 1, 1) self.upscale = upscale self.upsampler = upsampler self.ssm_ratio=ssm_ratio # ------------------------- 1, shallow feature extraction ------------------------- # self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) # ------------------------- 2, deep feature extraction ------------------------- # self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm self.num_features = embed_dim self.num_out_ch = num_out_ch self.dynamic_ids = dynamic_ids self.scan_len = scan_len img_size_ids = to_2tuple(img_size) self.image_size = img_size_ids if not self.dynamic_ids: self._generate_ids((1, 1, img_size_ids[0], img_size_ids[1])) # transfer 2D feature map into 1D token sequence, pay attention to whether using normalization self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # return 2D feature map from 1D token sequence self.patch_unembed = PatchUnEmbed( img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) self.pos_drop = nn.Dropout(p=drop_rate) self.is_light_sr = True if self.upsampler=='pixelshuffledirect' else False # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build Residual State Space Group (RSSG) self.layers = nn.ModuleList() for i_layer in range(self.num_layers): # 6-layer layer = RMG( dim=embed_dim, input_resolution=(patches_resolution[0], patches_resolution[1]), depth=depths[i_layer], d_state = d_state, ssm_ratio=self.ssm_ratio, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results norm_layer=norm_layer, downsample=None, use_checkpoint=use_checkpoint, img_size=img_size, patch_size=patch_size, resi_connection=resi_connection, is_light_sr = self.is_light_sr, scan_len=scan_len, mlp_ratio=mlp_ratio ) self.layers.append(layer) self.norm = norm_layer(self.num_features) # build the last conv layer in the end of all residual groups if resi_connection == '1conv': self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) elif resi_connection == '3conv': # to save parameters and memory self.conv_after_body = nn.Sequential( nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) # -------------------------3. high-quality image reconstruction ------------------------ # if self.upsampler == 'pixelshuffle': # for classical SR self.conv_before_upsample = nn.Sequential( nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) elif self.upsampler == 'pixelshuffledirect': # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch) else: # for image denoising self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def _generate_ids(self, inp_shape): B,C,H,W = inp_shape xs_scan_ids, xs_inverse_ids = mair_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len)# [B,H,W,C] if torch.cuda.is_available(): self.xs_scan_ids = xs_scan_ids.cuda() self.xs_inverse_ids = xs_inverse_ids.cuda() else: self.xs_scan_ids = xs_scan_ids self.xs_inverse_ids = xs_inverse_ids xs_shift_scan_ids, xs_shift_inverse_ids = mair_shift_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len, shift_len=self.scan_len//2)# [B,H,W,C] if torch.cuda.is_available(): self.xs_shift_scan_ids = xs_shift_scan_ids.cuda() self.xs_shift_inverse_ids = xs_shift_inverse_ids.cuda() else: self.xs_shift_scan_ids = xs_shift_scan_ids self.xs_shift_inverse_ids = xs_shift_inverse_ids del xs_scan_ids, xs_inverse_ids, xs_shift_scan_ids, xs_shift_inverse_ids def forward_features(self, x): B,C,H,W = x.shape x_size = (x.shape[2], x.shape[3]) x = self.patch_embed(x) # N,L,C x = self.pos_drop(x) if self.dynamic_ids or (self.image_size != (H, W)): xs_scan_ids, xs_inverse_ids = mair_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len)# [B,H,W,C] xs_shift_scan_ids, xs_shift_inverse_ids = mair_shift_ids_generate(inp_shape=(1, 1, H, W), scan_len=self.scan_len, shift_len=self.scan_len//2)# [B,H,W,C] if torch.cuda.is_available(): xs_scan_ids, xs_inverse_ids = xs_scan_ids.cuda(), xs_inverse_ids.cuda() xs_shift_scan_ids, xs_shift_inverse_ids = xs_shift_scan_ids.cuda(), xs_shift_inverse_ids.cuda() for layer in self.layers: x = layer(x, (xs_scan_ids, xs_inverse_ids, xs_shift_scan_ids, xs_shift_inverse_ids), x_size) else: for layer in self.layers: x = layer(x, (self.xs_scan_ids, self.xs_inverse_ids, self.xs_shift_scan_ids, self.xs_shift_inverse_ids), x_size) x = self.norm(x) # b seq_len c x = self.patch_unembed(x, x_size) return x def forward(self, x): self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range if self.upsampler == 'pixelshuffle': # for classical SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.conv_before_upsample(x) x = self.conv_last(self.upsample(x)) elif self.upsampler == 'pixelshuffledirect': # for lightweight SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.upsample(x) else: # for image denoising x_first = self.conv_first(x) res = self.conv_after_body(self.forward_features(x_first)) + x_first x = x + self.conv_last(res) x = x / self.img_range + self.mean return x def flops_layers(self): flops = 0 h, w = self.patches_resolution # flops of forward_features flops += self.patch_embed.flops() print("self.patches_resolution:", self.patches_resolution) for layer in self.layers: flops += layer.flops() # flops of self.norm flops += h * w * self.embed_dim # flops of self.patch_unembed flops += h * w * 9 * self.embed_dim * self.embed_dim # flops of self.conv_after_body flops += h * w * 9 * self.embed_dim * self.embed_dim # flops of Residual flops += h * w * self.embed_dim return flops def flops(self): flops = 0 h, w = self.patches_resolution # x = self.conv_first(x) flops += h * w * 3 * self.embed_dim * 9 if self.upsampler == 'pixelshuffle': # for classical SR # x = self.conv_after_body(self.forward_features(x)) + x flops += self.flops_layers() # x = self.conv_before_upsample(x) # nn.Conv2d(embed_dim, num_feat (=64), 3, 1, 1), nn.LeakyReLU(inplace=True)) flops += h * w * 9 * self.embed_dim * 64 flops += h * w * 64 # self.upsample(x) if self.upscale == 2: flops += h * w * 9 * 64 * 4*64 elif self.upscale == 3: flops += h * w * 9 * 64 * 9*64 # x = self.conv_last() flops += h * w * 9 * 64 * 3 elif self.upsampler == 'pixelshuffledirect': # x = self.conv_after_body(self.forward_features(x)) + x flops += self.flops_layers() # flops of UpsampleOneStep # self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch) flops += h * w * 9 * self.embed_dim * (self.upscale**2) * self.num_out_ch return flops class RMG(nn.Module): """Residual Mamba Group (RMG). Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. img_size: Input image size. patch_size: Patch size. resi_connection: The convolutional block before residual connection. """ def __init__(self, dim, input_resolution, depth, d_state=16, ssm_ratio=4., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, img_size=None, patch_size=None, resi_connection='1conv', is_light_sr = False, scan_len=4, mlp_ratio=2 ): super(RMG, self).__init__() self.dim = dim self.input_resolution = input_resolution # [64, 64] self.residual_group = BasicLayer( dim=dim, input_resolution=input_resolution, depth=depth, d_state = d_state, ssm_ratio=ssm_ratio, drop_path=drop_path, norm_layer=norm_layer, downsample=downsample, use_checkpoint=use_checkpoint, is_light_sr = is_light_sr, scan_len=scan_len, mlp_ratio = mlp_ratio ) # build the last conv layer in each residual state space group if resi_connection == '1conv': self.conv = nn.Conv2d(dim, dim, 3, 1, 1) elif resi_connection == '3conv': # to save parameters and memory self.conv = nn.Sequential( nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim, 3, 1, 1)) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) self.patch_unembed = PatchUnEmbed( img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) def forward(self, x, mair_ids, x_size): return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, mair_ids, x_size), x_size))) + x def flops(self): flops = 0 flops += self.residual_group.flops() h, w = self.input_resolution flops += h * w * self.dim * self.dim * 9 flops += self.patch_embed.flops() flops += self.patch_unembed.flops() return flops class PatchEmbed(nn.Module): r""" transfer 2D feature map into 1D token sequence Args: img_size (int): Image size. Default: None. patch_size (int): Patch token size. Default: None. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): x = x.flatten(2).transpose(1, 2) # b Ph*Pw c if self.norm is not None: x = self.norm(x) return x def flops(self): flops = 0 h, w = self.img_size if self.norm is not None: flops += h * w * self.embed_dim return flops class PatchUnEmbed(nn.Module): r""" return 2D feature map from 1D token sequence Args: img_size (int): Image size. Default: None. patch_size (int): Patch token size. Default: None. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim def forward(self, x, x_size): x = x.transpose(1, 2).view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) # b Ph*Pw c return x def flops(self): flops = 0 return flops class UpsampleOneStep(nn.Sequential): """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) Used in lightweight SR to save parameters. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat, num_out_ch): self.num_feat = num_feat m = [] m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) m.append(nn.PixelShuffle(scale)) super(UpsampleOneStep, self).__init__(*m) class Upsample(nn.Sequential): """Upsample module. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat): m = [] if (scale & (scale - 1)) == 0: # scale = 2^n for _ in range(int(math.log(scale, 2))): m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(2)) elif scale == 3: m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(3)) else: raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m) def get_parameter_number(model): total_num = sum(p.numel() for p in model.parameters()) trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) return {'Total': total_num, 'Trainable': trainable_num} if __name__ == '__main__': torch.cuda.set_device(7) # net = MaIR(img_size=(640, 360), embed_dim=60, d_state=1, ssm_ratio=1.1, dynamic_ids=False, mlp_ratio=1.6,upscale=2).cuda() net = MaIR(img_size=(320, 180), embed_dim=60, d_state=1, ssm_ratio=1.1, dynamic_ids=False, mlp_ratio=1.6,upscale=4).cuda() # net = MaIR(img_size=(64, 64), embed_dim=60, d_state=16, ssm_ratio=1.5, dynamic_ids=False, mlp_ratio=1.4,upscale=2).cuda() # net = MaIR(img_size=(320, 180), depths=(6, 6, 6, 6, 6, 6), embed_dim=180, d_state=16, ssm_ratio=2.0, dynamic_ids=False, # upscale=4, mlp_ratio=2.5, upsampler='pixelshuffle').cuda() print(get_parameter_number(net)) # FLOPS calculated here just for test, we use fvcore to report the final FLOPS in lightweight SR. print('FLOPS calculated by Ours: %.2f G'%(net.flops()/1e9))