import torch from torch.nn import functional as F import torchvision.transforms.functional as TF from basicsr.utils.registry import MODEL_REGISTRY from basicsr.models.sr_model import SRModel from tqdm import tqdm @MODEL_REGISTRY.register() class MaIRPlusModel(SRModel): """MaIR model for image restoration.""" def one_img_test(self, img): _, C, h, w = img.size() split_token_h = h // 200 + 1 # number of horizontal cut sections split_token_w = w // 200 + 1 # number of vertical cut sections # padding mod_pad_h, mod_pad_w = 0, 0 if h % split_token_h != 0: mod_pad_h = split_token_h - h % split_token_h if w % split_token_w != 0: mod_pad_w = split_token_w - w % split_token_w img = F.pad(img, (0, mod_pad_w, 0, mod_pad_h), 'reflect') _, _, H, W = img.size() split_h = H // split_token_h # height of each partition split_w = W // split_token_w # width of each partition # overlapping shave_h = split_h // 10 shave_w = split_w // 10 scale = self.opt.get('scale', 1) ral = H // split_h row = W // split_w slices = [] # list of partition borders for i in range(ral): for j in range(row): if i == 0 and i == ral - 1: top = slice(i * split_h, (i + 1) * split_h) elif i == 0: top = slice(i*split_h, (i+1)*split_h+shave_h) elif i == ral - 1: top = slice(i*split_h-shave_h, (i+1)*split_h) else: top = slice(i*split_h-shave_h, (i+1)*split_h+shave_h) if j == 0 and j == row - 1: left = slice(j*split_w, (j+1)*split_w) elif j == 0: left = slice(j*split_w, (j+1)*split_w+shave_w) elif j == row - 1: left = slice(j*split_w-shave_w, (j+1)*split_w) else: left = slice(j*split_w-shave_w, (j+1)*split_w+shave_w) temp = (top, left) slices.append(temp) img_chops = [] # list of partitions for temp in slices: top, left = temp img_chops.append(img[..., top, left]) if hasattr(self, 'net_g_ema'): self.net_g_ema.eval() with torch.no_grad(): outputs = [] for chop in img_chops: out = self.net_g_ema(chop) # image processing of each partition outputs.append(out) _img = torch.zeros(1, C, H * scale, W * scale) # merge for i in range(ral): for j in range(row): top = slice(i * split_h * scale, (i + 1) * split_h * scale) left = slice(j * split_w * scale, (j + 1) * split_w * scale) if i == 0: _top = slice(0, split_h * scale) else: _top = slice(shave_h*scale, (shave_h+split_h)*scale) if j == 0: _left = slice(0, split_w*scale) else: _left = slice(shave_w*scale, (shave_w+split_w)*scale) _img[..., top, left] = outputs[i * row + j][..., _top, _left] return _img else: self.net_g.eval() with torch.no_grad(): outputs = [] for chop in img_chops: out = self.net_g(chop) # image processing of each partition outputs.append(out) _img = torch.zeros(1, C, H * scale, W * scale) # merge for i in range(ral): for j in range(row): top = slice(i * split_h * scale, (i + 1) * split_h * scale) left = slice(j * split_w * scale, (j + 1) * split_w * scale) if i == 0: _top = slice(0, split_h * scale) else: _top = slice(shave_h * scale, (shave_h + split_h) * scale) if j == 0: _left = slice(0, split_w * scale) else: _left = slice(shave_w * scale, (shave_w + split_w) * scale) _img[..., top, left] = outputs[i * row + j][..., _top, _left] self.net_g.train() _, _, h, w = _img.size() _img = _img[:, :, 0:h - mod_pad_h * scale, 0:w - mod_pad_w * scale] return _img # test by partitioning def gather(self, imgs): for i in range(len(imgs), 0, -1): if i > 4: imgs[i-1] = imgs[i-1].clone().transpose(2,3) if (i-1) %4 > 1: imgs[i-1] = TF.hflip(imgs[i-1]) if ((i-1) % 4) % 2 == 1: imgs[i-1] = TF.vflip(imgs[i-1]) imgs = torch.cat(imgs, dim=0) imgs = torch.mean(imgs, dim=0, keepdim=True) return imgs def augment(self, img): imgs = [0] * 9 for i in range(1,9): if i == 1: imgs[i] = img elif i == 2: imgs[i] = TF.vflip(img) elif i >2 and i <=4 : imgs[i] = TF.hflip(imgs[i-2]) elif i > 4: imgs[i] = imgs[i-4].transpose(2,3) return imgs[1:] def test(self): lqs = self.augment(self.lq) output = [] for i in tqdm(range(len(lqs))): output.append(self.one_img_test(lqs[i])) self.output = self.gather(output)