Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import torch | |
| from torch.nn.parallel._functions import Scatter as OrigScatter | |
| from ._functions import Scatter | |
| from .data_container import DataContainer | |
| def scatter(inputs, target_gpus, dim=0): | |
| """Scatter inputs to target gpus. | |
| The only difference from original :func:`scatter` is to add support for | |
| :type:`~mmcv.parallel.DataContainer`. | |
| """ | |
| def scatter_map(obj): | |
| if isinstance(obj, torch.Tensor): | |
| if target_gpus != [-1]: | |
| return OrigScatter.apply(target_gpus, None, dim, obj) | |
| else: | |
| # for CPU inference we use self-implemented scatter | |
| return Scatter.forward(target_gpus, obj) | |
| if isinstance(obj, DataContainer): | |
| if obj.cpu_only: | |
| return obj.data | |
| else: | |
| return Scatter.forward(target_gpus, obj.data) | |
| if isinstance(obj, tuple) and len(obj) > 0: | |
| return list(zip(*map(scatter_map, obj))) | |
| if isinstance(obj, list) and len(obj) > 0: | |
| out = list(map(list, zip(*map(scatter_map, obj)))) | |
| return out | |
| if isinstance(obj, dict) and len(obj) > 0: | |
| out = list(map(type(obj), zip(*map(scatter_map, obj.items())))) | |
| return out | |
| return [obj for targets in target_gpus] | |
| # After scatter_map is called, a scatter_map cell will exist. This cell | |
| # has a reference to the actual function scatter_map, which has references | |
| # to a closure that has a reference to the scatter_map cell (because the | |
| # fn is recursive). To avoid this reference cycle, we set the function to | |
| # None, clearing the cell | |
| try: | |
| return scatter_map(inputs) | |
| finally: | |
| scatter_map = None | |
| def scatter_kwargs(inputs, kwargs, target_gpus, dim=0): | |
| """Scatter with support for kwargs dictionary.""" | |
| inputs = scatter(inputs, target_gpus, dim) if inputs else [] | |
| kwargs = scatter(kwargs, target_gpus, dim) if kwargs else [] | |
| if len(inputs) < len(kwargs): | |
| inputs.extend([() for _ in range(len(kwargs) - len(inputs))]) | |
| elif len(kwargs) < len(inputs): | |
| kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))]) | |
| inputs = tuple(inputs) | |
| kwargs = tuple(kwargs) | |
| return inputs, kwargs | |