Spaces:
Sleeping
Sleeping
File size: 22,618 Bytes
7e96e8d 62d8435 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d d136f0b 7e96e8d 193f45b 7e96e8d d136f0b 7e96e8d 193f45b d136f0b 7e96e8d 193f45b 7e96e8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
import gradio as gr
from utils.watermark import Watermarker
from utils.config import load_config
from renderers.highlighter import highlight_common_words, highlight_common_words_dict, reparaphrased_sentences_html
from renderers.tree import generate_subplot1, generate_subplot2
from pathlib import Path
import time
from typing import Dict, List, Tuple, Any
import plotly.graph_objects as go
class WatermarkerInterface:
def __init__(self, config):
self.pipeline = Watermarker(config)
self.common_grams = {}
self.highlight_info = []
self.masked_sentences = []
# Add tracking dictionaries for indexing
self.masked_sentence_indices = {} # Maps original sentences to masked indices
self.sampled_sentence_indices = {} # Maps masked sentences to sampling indices
self.reparaphrased_indices = {} # Maps sampled sentences to reparaphrased indices
def handle_paraphrase(self, prompt: str) -> Tuple[str, str, str, str]:
"""Wrapper for paraphrasing that includes highlighting"""
start_time = time.time()
# Run paraphrasing
self.pipeline.Paraphrase(prompt)
# Step 1: Process the original sentence first
seen_ngrams = {} # Stores first occurrence index of each n-gram
original_indexed_ngrams = [] # Final indexed list for original
original_sentence = self.pipeline.user_prompt
original_ngrams = self.pipeline.common_grams.get(original_sentence, {})
# Step 1.1: Extract n-grams and their first occurrence index
ngram_occurrences = [
(min(indices, key=lambda x: x[0])[0], gram) # Get first index
for gram, indices in original_ngrams.items()
]
# Step 1.2: Sort n-grams based on their first occurrence
ngram_occurrences.sort()
# Step 1.3: Assign sequential indices
for idx, (position, gram) in enumerate(ngram_occurrences, start=1):
seen_ngrams[gram] = idx # Assign sequential index
original_indexed_ngrams.append((idx, gram))
print("Original Indexed N-grams:", original_indexed_ngrams)
#generate highlight_info
colors = ["red", "blue", "purple", "green", "orange"]
highlight_info = [
(ngram, colors[i % len(colors)])
for i, (index, ngram) in enumerate(original_indexed_ngrams)
]
common_grams = original_indexed_ngrams
self.highlight_info = highlight_info
self.common_grams = common_grams
# Step 2: Process paraphrased sentences and match indices
paraphrase_indexed_ngrams = {}
for sentence in self.pipeline.paraphrased_sentences:
sentence_ngrams = [] # Stores n-grams for this sentence
sentence_ngrams_dict = self.pipeline.common_grams.get(sentence, {})
for gram, indices in sentence_ngrams_dict.items():
first_occurrence = min(indices, key=lambda x: x[0])[0]
# Use the original's index if exists, otherwise assign a new one
if gram in seen_ngrams:
index = seen_ngrams[gram] # Use the same index as original
else:
index = len(seen_ngrams) + 1 # Assign new index
seen_ngrams[gram] = index # Store it
sentence_ngrams.append((index, gram))
sentence_ngrams.sort()
paraphrase_indexed_ngrams[sentence] = sentence_ngrams
print("Paraphrase Indexed N-grams:", paraphrase_indexed_ngrams)
# Step 3: Generate highlighted versions using the renderer
highlighted_prompt = highlight_common_words(
common_grams,
[self.pipeline.user_prompt],
"Original Prompt with Highlighted Common Sequences"
)
highlighted_accepted = highlight_common_words_dict(
common_grams,
self.pipeline.selected_sentences,
"Accepted Paraphrased Sentences with Entailment Scores"
)
highlighted_discarded = highlight_common_words_dict(
common_grams,
self.pipeline.discarded_sentences,
"Discarded Paraphrased Sentences with Entailment Scores"
)
execution_time = f"<div class='execution-time'>Step 1 completed in {time.time() - start_time:.2f} seconds</div>"
return highlighted_prompt, highlighted_accepted, highlighted_discarded, execution_time
def handle_masking(self):
start_time = time.time()
masking_results = self.pipeline.Masking()
trees = []
highlight_info = self.highlight_info
common_grams = self.common_grams
sentence_to_masked = {}
self.masked_sentence_indices = {}
for strategy, sentence_dict in masking_results.items():
for sent, data in sentence_dict.items():
if sent not in sentence_to_masked:
sentence_to_masked[sent] = []
masked_sentence = data.get("masked_sentence", "")
if masked_sentence:
sentence_to_masked[sent].append((masked_sentence, strategy))
plot_idx = 1
for original_sentence, masked_sentences_data in sentence_to_masked.items():
if not masked_sentences_data:
continue
masked_idx = 1
for masked_sentence, strategy in masked_sentences_data:
index = f"{plot_idx}{masked_idx}"
if original_sentence not in self.masked_sentence_indices:
self.masked_sentence_indices[original_sentence] = {}
key = f"{strategy}_{masked_sentence}"
self.masked_sentence_indices[original_sentence][key] = {
'index': index,
'strategy': strategy,
'masked_sentence': masked_sentence
}
masked_idx += 1
masked_sentences = [ms[0] for ms in masked_sentences_data]
indexed_masked_sentences = []
verified_strategies = []
for masked_sentence, strategy in masked_sentences_data:
key = f"{strategy}_{masked_sentence}"
entry = self.masked_sentence_indices[original_sentence][key]
idx = entry['index']
indexed_masked_sentences.append(f"[{idx}] {masked_sentence}")
verified_strategies.append(entry['strategy'])
try:
fig = generate_subplot1(
original_sentence,
indexed_masked_sentences,
verified_strategies,
highlight_info,
common_grams
)
trees.append(fig)
except Exception as e:
print(f"Error generating plot: {e}")
trees.append(go.Figure())
plot_idx += 1
while len(trees) < 10:
trees.append(go.Figure())
execution_time = f"<div class='execution-time'>Step 2 completed in {time.time() - start_time:.2f} seconds</div>"
return trees[:10] + [execution_time]
def handle_sampling(self) -> Tuple[List[go.Figure], str]:
start_time = time.time()
sampling_results = self.pipeline.Sampling()
trees = []
self.sampled_sentence_indices = {}
organized_results = {}
for sampling_strategy, masking_dict in sampling_results.items():
for masking_strategy, sentences in masking_dict.items():
for original_sentence, data in sentences.items():
if original_sentence not in organized_results:
organized_results[original_sentence] = {}
if masking_strategy not in organized_results[original_sentence]:
organized_results[original_sentence][masking_strategy] = {
"masked_sentence": data.get("masked_sentence", ""),
"sampled_sentences": {}
}
organized_results[original_sentence][masking_strategy]["sampled_sentences"][sampling_strategy] = data.get("sampled_sentence", "")
plot_idx = 1
for original_sentence, data in organized_results.items():
masked_sentences = []
all_sampled_sentences = []
indexed_sampled_sentences = []
masked_indices = self.masked_sentence_indices.get(original_sentence, {})
for masking_strategy, masking_data in list(data.items())[:3]:
masked_sentence = masking_data.get("masked_sentence", "")
if masked_sentence:
masked_sentences.append(masked_sentence)
masked_idx = None
for ms_key, ms_data in masked_indices.items():
if ms_key == f"{masking_strategy}_{masked_sentence}":
masked_idx = ms_data['index']
break
if not masked_idx:
print(f"Warning: No index found for masked sentence: {masked_sentence}")
continue
sample_count = 1
for sampling_strategy, sampled_sentence in masking_data.get("sampled_sentences", {}).items():
if sampled_sentence:
sample_idx = f"{masked_idx}.{sample_count}"
if masked_sentence not in self.sampled_sentence_indices:
self.sampled_sentence_indices[masked_sentence] = {}
self.sampled_sentence_indices[masked_sentence][sampled_sentence] = {
'index': sample_idx,
'strategy': sampling_strategy
}
indexed_sampled_sentences.append(f"[{sample_idx}] {sampled_sentence}")
all_sampled_sentences.append(sampled_sentence)
sample_count += 1
if masked_sentences:
indexed_masked_sentences = []
for ms in masked_sentences:
idx = ""
for ms_key, ms_data in masked_indices.items():
if ms_key.endswith(f"_{ms}"):
idx = ms_data['index']
break
indexed_masked_sentences.append(f"[{idx}] {ms}")
try:
fig = generate_subplot2(
indexed_masked_sentences,
indexed_sampled_sentences,
self.highlight_info,
self.common_grams
)
trees.append(fig)
except Exception as e:
print(f"Error generating subplot for {original_sentence}: {e}")
trees.append(go.Figure())
plot_idx += 1
print("Sampled sentence indices:", self.sampled_sentence_indices)
while len(trees) < 10:
trees.append(go.Figure())
execution_time = f"<div class='execution-time'>Step 3 completed in {time.time() - start_time:.2f} seconds</div>"
return trees[:10] + [execution_time]
def handle_reparaphrasing(self) -> Tuple[List[str], str]:
start_time = time.time()
results = self.pipeline.re_paraphrasing()
html_outputs = []
self.reparaphrased_indices = {}
tab_count = 1
for sampling_strategy, masking_dict in results.items():
for masking_strategy, sentences in masking_dict.items():
for original_sent, data in sentences.items():
sampled_sentence = data.get("sampled_sentence", "")
if not sampled_sentence or not data["re_paraphrased_sentences"]:
continue
sampled_index = None
for masked_sent, sampled_dict in self.sampled_sentence_indices.items():
if sampled_sentence in sampled_dict:
sampled_index = sampled_dict[sampled_sentence]['index']
break
if not sampled_index:
sampled_index = "unknown"
indexed_reparaphrased = []
for i, rp_sent in enumerate(data["re_paraphrased_sentences"], 1):
rp_idx = f"{tab_count}.({sampled_index}).{i}"
if sampled_sentence not in self.reparaphrased_indices:
self.reparaphrased_indices[sampled_sentence] = {}
self.reparaphrased_indices[sampled_sentence][rp_sent] = rp_idx
indexed_reparaphrased.append(f"[{rp_idx}] {rp_sent}")
print(f"Reparaphrasing {tab_count}.({sampled_index}): {' '.join(sampled_sentence.split()[:5])}...")
html = reparaphrased_sentences_html(indexed_reparaphrased)
html_outputs.append(html)
tab_count += 1
print("Reparaphrased indices:", self.reparaphrased_indices)
while len(html_outputs) < 150:
html_outputs.append("")
execution_time = f"<div class='execution-time'>Step 4 completed in {time.time() - start_time:.2f} seconds</div>"
return html_outputs[:150] + [execution_time]
def create_gradio_interface(config):
"""Creates the Gradio interface with the updated pipeline"""
interface = WatermarkerInterface(config)
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
#CSS to enable scrolling for reparaphrased sentences and sampling plots
demo.css = """
/* Set fixed height for the reparaphrased tabs container only */
.gradio-container .tabs[id="reparaphrased-tabs"],
.gradio-container .tabs[id="sampling-tabs"] {
overflow-x: hidden;
white-space: normal;
border-radius: 8px;
max-height: 600px; /* Set fixed height for the entire tabs component */
overflow-y: auto; /* Enable vertical scrolling inside the container */
}
/* Tab content styling for reparaphrased and sampling tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tabitem,
.gradio-container .tabs[id="sampling-tabs"] .tabitem {
overflow-x: hidden;
white-space: normal;
display: block;
border-radius: 8px;
}
/* Make the tab navigation fixed at the top for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav {
display: flex;
overflow-x: auto;
white-space: nowrap;
scrollbar-width: thin;
border-radius: 8px;
scrollbar-color: #888 #f1f1f1;
position: sticky;
top: 0;
background: white;
z-index: 100;
}
/* Dropdown menu for scrollable tabs styling */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown {
position: relative;
display: inline-block;
}
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown-content,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown-content {
display: none;
position: absolute;
background-color: #f9f9f9;
min-width: 160px;
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
z-index: 1;
max-height: 300px;
overflow-y: auto;
}
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown:hover .tab-dropdown-content,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown:hover .tab-dropdown-content {
display: block;
}
/* Scrollbar styling for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav::-webkit-scrollbar,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav::-webkit-scrollbar {
height: 8px;
border-radius: 8px;
}
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav::-webkit-scrollbar-track,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 8px;
}
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav::-webkit-scrollbar-thumb,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav::-webkit-scrollbar-thumb {
background: #888;
border-radius: 8px;
}
/* Tab button styling for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-item,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-item {
flex: 0 0 auto;
border-radius: 8px;
}
/* Plot container styling specifically for sampling tabs */
.gradio-container .tabs[id="sampling-tabs"] .plot-container {
min-height: 600px;
max-height: 1800px;
overflow-y: auto;
}
/* Ensure text wraps in HTML components */
.gradio-container .prose {
white-space: normal;
word-wrap: break-word;
overflow-wrap: break-word;
}
/* Dropdown button styling for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown button,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown button {
background-color: #f0f0f0;
border: 1px solid #ddd;
border-radius: 4px;
padding: 5px 10px;
cursor: pointer;
margin: 2px;
}
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown button:hover,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown button:hover {
background-color: #e0e0e0;
}
/* Style dropdown content items for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown-content div,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown-content div {
padding: 8px 12px;
cursor: pointer;
}
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown-content div:hover,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown-content div:hover {
background-color: #e0e0e0;
}
/* Custom styling for execution time display */
.execution-time {
text-align: right;
padding: 8px 16px;
font-family: inherit;
color: #555;
font-size: 0.9rem;
font-style: italic;
margin-left: auto;
width: 100%;
border-top: 1px solid #eee;
margin-top: 8px;
}
/* Layout for section headers with execution time */
.section-header {
display: flex;
justify-content: space-between;
align-items: center;
width: 100%;
margin-bottom: 12px;
}
.section-header h3 {
margin: 0;
}
"""
gr.Markdown("# **AIISC Watermarking Model**")
with gr.Column():
gr.Markdown("## Input Prompt")
user_input = gr.Textbox(
label="Enter Your Prompt",
placeholder="Type your text here..."
)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("## Step 1: Paraphrasing, LCS and Entailment Analysis")
with gr.Column(scale=1):
step1_time = gr.HTML()
paraphrase_button = gr.Button("Generate Paraphrases")
highlighted_user_prompt = gr.HTML(label="Highlighted User Prompt")
with gr.Tabs():
with gr.TabItem("Accepted Paraphrased Sentences"):
highlighted_accepted_sentences = gr.HTML()
with gr.TabItem("Discarded Paraphrased Sentences"):
highlighted_discarded_sentences = gr.HTML()
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("## Step 2: Where to Mask?")
with gr.Column(scale=1):
step2_time = gr.HTML()
masking_button = gr.Button("Apply Masking")
gr.Markdown("### Masked Sentence Trees")
tree1_plots = []
with gr.Tabs() as tree1_tabs:
for i in range(10):
with gr.TabItem(f"Masked Sentence {i+1}"):
tree1 = gr.Plot()
tree1_plots.append(tree1)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("## Step 3: How to Mask?")
with gr.Column(scale=1):
step3_time = gr.HTML()
sampling_button = gr.Button("Sample Words")
gr.Markdown("### Sampled Sentence Trees")
tree2_plots = []
# Add elem_id to make this tab container scrollable
with gr.Tabs(elem_id="sampling-tabs") as tree2_tabs:
for i in range(10):
with gr.TabItem(f"Sampled Sentence {i+1}"):
# Add a custom class to the container to enable proper styling
with gr.Column(elem_classes=["plot-container"]):
tree2 = gr.Plot()
tree2_plots.append(tree2)
with gr.Row():
with gr.Column(scale=3):
gr.Markdown("## Step 4: Re-paraphrasing")
with gr.Column(scale=1):
step4_time = gr.HTML()
reparaphrase_button = gr.Button("Re-paraphrase")
gr.Markdown("### Reparaphrased Sentences")
reparaphrased_sentences_tabs = []
with gr.Tabs(elem_id="reparaphrased-tabs") as reparaphrased_tabs:
for i in range(150):
with gr.TabItem(f"Reparaphrased Batch {i+1}"):
reparaphrased_sent_html = gr.HTML()
reparaphrased_sentences_tabs.append(reparaphrased_sent_html)
# Connect the interface functions to the buttons
paraphrase_button.click(
interface.handle_paraphrase,
inputs=user_input,
outputs=[
highlighted_user_prompt,
highlighted_accepted_sentences,
highlighted_discarded_sentences,
step1_time
]
)
masking_button.click(
interface.handle_masking,
inputs=None,
outputs=tree1_plots + [step2_time]
)
sampling_button.click(
interface.handle_sampling,
inputs=None,
outputs=tree2_plots + [step3_time]
)
reparaphrase_button.click(
interface.handle_reparaphrasing,
inputs=None,
outputs=reparaphrased_sentences_tabs + [step4_time]
)
return demo
if __name__ == "__main__":
project_root = Path(__file__).parent.parent
config_path = project_root / "utils" / "config.yaml"
config = load_config(config_path)['PECCAVI_TEXT']
create_gradio_interface(config).launch() |