File size: 22,618 Bytes
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d8435
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d136f0b
7e96e8d
 
 
 
 
 
 
d136f0b
7e96e8d
 
 
 
d136f0b
 
 
7e96e8d
 
 
 
 
 
 
 
 
 
d136f0b
 
7e96e8d
d136f0b
 
7e96e8d
 
d136f0b
7e96e8d
 
d136f0b
 
 
 
 
 
 
 
7e96e8d
 
 
d136f0b
 
7e96e8d
 
 
 
 
d136f0b
7e96e8d
 
d136f0b
7e96e8d
 
d136f0b
7e96e8d
 
d136f0b
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d136f0b
7e96e8d
 
 
 
 
d136f0b
 
7e96e8d
 
d136f0b
7e96e8d
 
 
d136f0b
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d136f0b
7e96e8d
 
 
d136f0b
7e96e8d
 
d136f0b
 
 
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d136f0b
7e96e8d
 
 
 
 
 
d136f0b
7e96e8d
 
 
 
 
 
d136f0b
7e96e8d
 
 
 
 
d136f0b
7e96e8d
 
d136f0b
7e96e8d
 
 
 
 
 
 
d136f0b
7e96e8d
 
 
 
 
 
 
193f45b
7e96e8d
d136f0b
7e96e8d
 
193f45b
d136f0b
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193f45b
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import gradio as gr
from utils.watermark import Watermarker
from utils.config import load_config
from renderers.highlighter import highlight_common_words, highlight_common_words_dict, reparaphrased_sentences_html
from renderers.tree import generate_subplot1, generate_subplot2
from pathlib import Path
import time
from typing import Dict, List, Tuple, Any
import plotly.graph_objects as go

class WatermarkerInterface:
    def __init__(self, config):
        self.pipeline = Watermarker(config)    
        self.common_grams = {}
        self.highlight_info = []    
        self.masked_sentences = []
        
        # Add tracking dictionaries for indexing
        self.masked_sentence_indices = {}  # Maps original sentences to masked indices
        self.sampled_sentence_indices = {}  # Maps masked sentences to sampling indices
        self.reparaphrased_indices = {}    # Maps sampled sentences to reparaphrased indices
        
    def handle_paraphrase(self, prompt: str) -> Tuple[str, str, str, str]:
        """Wrapper for paraphrasing that includes highlighting"""
        start_time = time.time()
        
        # Run paraphrasing
        self.pipeline.Paraphrase(prompt)

        # Step 1: Process the original sentence first
        seen_ngrams = {}  # Stores first occurrence index of each n-gram
        original_indexed_ngrams = []  # Final indexed list for original
        
        original_sentence = self.pipeline.user_prompt
        original_ngrams = self.pipeline.common_grams.get(original_sentence, {})

        # Step 1.1: Extract n-grams and their first occurrence index
        ngram_occurrences = [
            (min(indices, key=lambda x: x[0])[0], gram)  # Get first index
            for gram, indices in original_ngrams.items()
        ]

        # Step 1.2: Sort n-grams based on their first occurrence
        ngram_occurrences.sort()

        # Step 1.3: Assign sequential indices
        for idx, (position, gram) in enumerate(ngram_occurrences, start=1):
            seen_ngrams[gram] = idx  # Assign sequential index
            original_indexed_ngrams.append((idx, gram))

        print("Original Indexed N-grams:", original_indexed_ngrams)

        #generate highlight_info
        colors = ["red", "blue", "purple", "green", "orange"]
        highlight_info = [
            (ngram, colors[i % len(colors)])
            for i, (index, ngram) in enumerate(original_indexed_ngrams)
        ]
        common_grams = original_indexed_ngrams
        self.highlight_info = highlight_info
        self.common_grams = common_grams

        # Step 2: Process paraphrased sentences and match indices
        paraphrase_indexed_ngrams = {}

        for sentence in self.pipeline.paraphrased_sentences:
            sentence_ngrams = []  # Stores n-grams for this sentence
            sentence_ngrams_dict = self.pipeline.common_grams.get(sentence, {})

            for gram, indices in sentence_ngrams_dict.items():
                first_occurrence = min(indices, key=lambda x: x[0])[0]

                # Use the original's index if exists, otherwise assign a new one
                if gram in seen_ngrams:
                    index = seen_ngrams[gram]  # Use the same index as original
                else:
                    index = len(seen_ngrams) + 1  # Assign new index
                    seen_ngrams[gram] = index  # Store it

                sentence_ngrams.append((index, gram))

            sentence_ngrams.sort()
            paraphrase_indexed_ngrams[sentence] = sentence_ngrams

        print("Paraphrase Indexed N-grams:", paraphrase_indexed_ngrams)

        # Step 3: Generate highlighted versions using the renderer
        highlighted_prompt = highlight_common_words(
            common_grams, 
            [self.pipeline.user_prompt], 
            "Original Prompt with Highlighted Common Sequences"
        )

        highlighted_accepted = highlight_common_words_dict(
            common_grams,
            self.pipeline.selected_sentences,
            "Accepted Paraphrased Sentences with Entailment Scores"
        )

        highlighted_discarded = highlight_common_words_dict(
            common_grams,
            self.pipeline.discarded_sentences,
            "Discarded Paraphrased Sentences with Entailment Scores"
        )

        execution_time = f"<div class='execution-time'>Step 1 completed in {time.time() - start_time:.2f} seconds</div>"

        return highlighted_prompt, highlighted_accepted, highlighted_discarded, execution_time

    def handle_masking(self):
        start_time = time.time()
        masking_results = self.pipeline.Masking()
        trees = []
        highlight_info = self.highlight_info
        common_grams = self.common_grams
        sentence_to_masked = {}
        self.masked_sentence_indices = {}

        for strategy, sentence_dict in masking_results.items():
            for sent, data in sentence_dict.items():
                if sent not in sentence_to_masked:
                    sentence_to_masked[sent] = []
                masked_sentence = data.get("masked_sentence", "")
                if masked_sentence:
                    sentence_to_masked[sent].append((masked_sentence, strategy))

        plot_idx = 1
        for original_sentence, masked_sentences_data in sentence_to_masked.items():
            if not masked_sentences_data:
                continue
            masked_idx = 1
            for masked_sentence, strategy in masked_sentences_data:
                index = f"{plot_idx}{masked_idx}"
                if original_sentence not in self.masked_sentence_indices:
                    self.masked_sentence_indices[original_sentence] = {}
                key = f"{strategy}_{masked_sentence}"
                self.masked_sentence_indices[original_sentence][key] = {
                    'index': index,
                    'strategy': strategy,
                    'masked_sentence': masked_sentence
                }
                masked_idx += 1

            masked_sentences = [ms[0] for ms in masked_sentences_data]
            indexed_masked_sentences = []
            verified_strategies = []
            for masked_sentence, strategy in masked_sentences_data:
                key = f"{strategy}_{masked_sentence}"
                entry = self.masked_sentence_indices[original_sentence][key]
                idx = entry['index']
                indexed_masked_sentences.append(f"[{idx}] {masked_sentence}")
                verified_strategies.append(entry['strategy'])

            try:
                fig = generate_subplot1(
                    original_sentence, 
                    indexed_masked_sentences,
                    verified_strategies,
                    highlight_info,
                    common_grams
                )
                trees.append(fig)
            except Exception as e:
                print(f"Error generating plot: {e}")
                trees.append(go.Figure())
            plot_idx += 1

        while len(trees) < 10:
            trees.append(go.Figure())

        execution_time = f"<div class='execution-time'>Step 2 completed in {time.time() - start_time:.2f} seconds</div>"
        return trees[:10] + [execution_time]

    def handle_sampling(self) -> Tuple[List[go.Figure], str]:
        start_time = time.time()
        sampling_results = self.pipeline.Sampling()
        trees = []
        self.sampled_sentence_indices = {}
        organized_results = {}

        for sampling_strategy, masking_dict in sampling_results.items():
            for masking_strategy, sentences in masking_dict.items():
                for original_sentence, data in sentences.items():
                    if original_sentence not in organized_results:
                        organized_results[original_sentence] = {}
                    if masking_strategy not in organized_results[original_sentence]:
                        organized_results[original_sentence][masking_strategy] = {
                            "masked_sentence": data.get("masked_sentence", ""),
                            "sampled_sentences": {}
                        }
                    organized_results[original_sentence][masking_strategy]["sampled_sentences"][sampling_strategy] = data.get("sampled_sentence", "")

        plot_idx = 1
        for original_sentence, data in organized_results.items():
            masked_sentences = []
            all_sampled_sentences = []
            indexed_sampled_sentences = []
            masked_indices = self.masked_sentence_indices.get(original_sentence, {})

            for masking_strategy, masking_data in list(data.items())[:3]:
                masked_sentence = masking_data.get("masked_sentence", "")
                if masked_sentence:
                    masked_sentences.append(masked_sentence)
                    masked_idx = None
                    for ms_key, ms_data in masked_indices.items():
                        if ms_key == f"{masking_strategy}_{masked_sentence}":
                            masked_idx = ms_data['index']
                            break

                    if not masked_idx:
                        print(f"Warning: No index found for masked sentence: {masked_sentence}")
                        continue

                    sample_count = 1
                    for sampling_strategy, sampled_sentence in masking_data.get("sampled_sentences", {}).items():
                        if sampled_sentence:
                            sample_idx = f"{masked_idx}.{sample_count}"
                            if masked_sentence not in self.sampled_sentence_indices:
                                self.sampled_sentence_indices[masked_sentence] = {}
                            self.sampled_sentence_indices[masked_sentence][sampled_sentence] = {
                                'index': sample_idx,
                                'strategy': sampling_strategy
                            }
                            indexed_sampled_sentences.append(f"[{sample_idx}] {sampled_sentence}")
                            all_sampled_sentences.append(sampled_sentence)
                            sample_count += 1

            if masked_sentences:
                indexed_masked_sentences = []
                for ms in masked_sentences:
                    idx = ""
                    for ms_key, ms_data in masked_indices.items():
                        if ms_key.endswith(f"_{ms}"):
                            idx = ms_data['index']
                            break
                    indexed_masked_sentences.append(f"[{idx}] {ms}")

                try:
                    fig = generate_subplot2(
                        indexed_masked_sentences,
                        indexed_sampled_sentences,
                        self.highlight_info,
                        self.common_grams
                    )
                    trees.append(fig)
                except Exception as e:
                    print(f"Error generating subplot for {original_sentence}: {e}")
                    trees.append(go.Figure())
            plot_idx += 1

        print("Sampled sentence indices:", self.sampled_sentence_indices)

        while len(trees) < 10:
            trees.append(go.Figure())

        execution_time = f"<div class='execution-time'>Step 3 completed in {time.time() - start_time:.2f} seconds</div>"

        return trees[:10] + [execution_time]

    def handle_reparaphrasing(self) -> Tuple[List[str], str]:
        start_time = time.time()
        results = self.pipeline.re_paraphrasing()
        html_outputs = []
        self.reparaphrased_indices = {}
        tab_count = 1

        for sampling_strategy, masking_dict in results.items():
            for masking_strategy, sentences in masking_dict.items():
                for original_sent, data in sentences.items():
                    sampled_sentence = data.get("sampled_sentence", "")
                    if not sampled_sentence or not data["re_paraphrased_sentences"]:
                        continue

                    sampled_index = None
                    for masked_sent, sampled_dict in self.sampled_sentence_indices.items():
                        if sampled_sentence in sampled_dict:
                            sampled_index = sampled_dict[sampled_sentence]['index']
                            break

                    if not sampled_index:
                        sampled_index = "unknown"

                    indexed_reparaphrased = []
                    for i, rp_sent in enumerate(data["re_paraphrased_sentences"], 1):
                        rp_idx = f"{tab_count}.({sampled_index}).{i}"
                        if sampled_sentence not in self.reparaphrased_indices:
                            self.reparaphrased_indices[sampled_sentence] = {}
                        self.reparaphrased_indices[sampled_sentence][rp_sent] = rp_idx
                        indexed_reparaphrased.append(f"[{rp_idx}] {rp_sent}")

                    print(f"Reparaphrasing {tab_count}.({sampled_index}): {' '.join(sampled_sentence.split()[:5])}...")
                    html = reparaphrased_sentences_html(indexed_reparaphrased)
                    html_outputs.append(html)
                    tab_count += 1

        print("Reparaphrased indices:", self.reparaphrased_indices)

        while len(html_outputs) < 150:
            html_outputs.append("")

        execution_time = f"<div class='execution-time'>Step 4 completed in {time.time() - start_time:.2f} seconds</div>"

        return html_outputs[:150] + [execution_time]
    
def create_gradio_interface(config):
    """Creates the Gradio interface with the updated pipeline"""
    interface = WatermarkerInterface(config)
    
    with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
        #CSS to enable scrolling for reparaphrased sentences and sampling plots
        demo.css = """
/* Set fixed height for the reparaphrased tabs container only */
.gradio-container .tabs[id="reparaphrased-tabs"],
.gradio-container .tabs[id="sampling-tabs"] {
    overflow-x: hidden;
    white-space: normal;
    border-radius: 8px;
    max-height: 600px; /* Set fixed height for the entire tabs component */
    overflow-y: auto; /* Enable vertical scrolling inside the container */
}

/* Tab content styling for reparaphrased and sampling tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tabitem,
.gradio-container .tabs[id="sampling-tabs"] .tabitem {
    overflow-x: hidden;
    white-space: normal;
    display: block;
    border-radius: 8px;
}

/* Make the tab navigation fixed at the top for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav {
    display: flex;
    overflow-x: auto;
    white-space: nowrap;
    scrollbar-width: thin;
    border-radius: 8px;
    scrollbar-color: #888 #f1f1f1;
    position: sticky;
    top: 0;
    background: white;
    z-index: 100;
}

/* Dropdown menu for scrollable tabs styling */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown {
    position: relative;
    display: inline-block;
}

.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown-content,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown-content {
    display: none;
    position: absolute;
    background-color: #f9f9f9;
    min-width: 160px;
    box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
    z-index: 1;
    max-height: 300px;
    overflow-y: auto;
}

.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown:hover .tab-dropdown-content,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown:hover .tab-dropdown-content {
    display: block;
}

/* Scrollbar styling for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav::-webkit-scrollbar,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav::-webkit-scrollbar {
    height: 8px;
    border-radius: 8px;
}

.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav::-webkit-scrollbar-track,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav::-webkit-scrollbar-track {
    background: #f1f1f1;
    border-radius: 8px;
}

.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav::-webkit-scrollbar-thumb,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav::-webkit-scrollbar-thumb {
    background: #888;
    border-radius: 8px;
}

/* Tab button styling for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-item,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-item {
    flex: 0 0 auto;
    border-radius: 8px;
}

/* Plot container styling specifically for sampling tabs */
.gradio-container .tabs[id="sampling-tabs"] .plot-container {
    min-height: 600px;
    max-height: 1800px;
    overflow-y: auto;
}

/* Ensure text wraps in HTML components */
.gradio-container .prose {
    white-space: normal;
    word-wrap: break-word;
    overflow-wrap: break-word;
}

/* Dropdown button styling for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown button,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown button {
    background-color: #f0f0f0;
    border: 1px solid #ddd;
    border-radius: 4px;
    padding: 5px 10px;
    cursor: pointer;
    margin: 2px;
}

.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown button:hover,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown button:hover {
    background-color: #e0e0e0;
}

/* Style dropdown content items for scrollable tabs */
.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown-content div,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown-content div {
    padding: 8px 12px;
    cursor: pointer;
}

.gradio-container .tabs[id="reparaphrased-tabs"] .tab-nav .tab-dropdown-content div:hover,
.gradio-container .tabs[id="sampling-tabs"] .tab-nav .tab-dropdown-content div:hover {
    background-color: #e0e0e0;
}

/* Custom styling for execution time display */
.execution-time {
    text-align: right;
    padding: 8px 16px;
    font-family: inherit;
    color: #555;
    font-size: 0.9rem;
    font-style: italic;
    margin-left: auto;
    width: 100%;
    border-top: 1px solid #eee;
    margin-top: 8px;
}

/* Layout for section headers with execution time */
.section-header {
    display: flex;
    justify-content: space-between;
    align-items: center;
    width: 100%;
    margin-bottom: 12px;
}

.section-header h3 {
    margin: 0;
}
"""
        gr.Markdown("# **AIISC Watermarking Model**")
        
        with gr.Column():
            gr.Markdown("## Input Prompt")
            user_input = gr.Textbox(
                label="Enter Your Prompt",
                placeholder="Type your text here..."
            )

        with gr.Row():
            with gr.Column(scale=3):
                gr.Markdown("## Step 1: Paraphrasing, LCS and Entailment Analysis")
            with gr.Column(scale=1):
                step1_time = gr.HTML()

        paraphrase_button = gr.Button("Generate Paraphrases")
        highlighted_user_prompt = gr.HTML(label="Highlighted User Prompt")

        with gr.Tabs():
            with gr.TabItem("Accepted Paraphrased Sentences"):
                highlighted_accepted_sentences = gr.HTML()
            with gr.TabItem("Discarded Paraphrased Sentences"):
                highlighted_discarded_sentences = gr.HTML()
            
        with gr.Row():
            with gr.Column(scale=3):
                gr.Markdown("## Step 2: Where to Mask?")
            with gr.Column(scale=1):
                step2_time = gr.HTML()

        masking_button = gr.Button("Apply Masking")
        gr.Markdown("### Masked Sentence Trees")
        tree1_plots = []
        with gr.Tabs() as tree1_tabs:
            for i in range(10):
                with gr.TabItem(f"Masked Sentence {i+1}"):
                    tree1 = gr.Plot()
                    tree1_plots.append(tree1)

        with gr.Row():
            with gr.Column(scale=3):
                gr.Markdown("## Step 3: How to Mask?")
            with gr.Column(scale=1):
                step3_time = gr.HTML()

        sampling_button = gr.Button("Sample Words")
        gr.Markdown("### Sampled Sentence Trees")

        tree2_plots = []
        # Add elem_id to make this tab container scrollable
        with gr.Tabs(elem_id="sampling-tabs") as tree2_tabs:
            for i in range(10):
                with gr.TabItem(f"Sampled Sentence {i+1}"):
                    # Add a custom class to the container to enable proper styling
                    with gr.Column(elem_classes=["plot-container"]):
                        tree2 = gr.Plot()
                        tree2_plots.append(tree2)
        
        with gr.Row():
            with gr.Column(scale=3):
                gr.Markdown("## Step 4: Re-paraphrasing")
            with gr.Column(scale=1):
                step4_time = gr.HTML()

        reparaphrase_button = gr.Button("Re-paraphrase")
        gr.Markdown("### Reparaphrased Sentences")
        reparaphrased_sentences_tabs = []
        with gr.Tabs(elem_id="reparaphrased-tabs") as reparaphrased_tabs:
            for i in range(150):
                with gr.TabItem(f"Reparaphrased Batch {i+1}"):
                    reparaphrased_sent_html = gr.HTML()
                    reparaphrased_sentences_tabs.append(reparaphrased_sent_html)
        
        # Connect the interface functions to the buttons
        paraphrase_button.click(
            interface.handle_paraphrase,
            inputs=user_input,
            outputs=[
                highlighted_user_prompt,
                highlighted_accepted_sentences,
                highlighted_discarded_sentences,
                step1_time
            ]
        )
        
        masking_button.click(
            interface.handle_masking,
            inputs=None,
            outputs=tree1_plots + [step2_time]
        )

        sampling_button.click(
            interface.handle_sampling,
            inputs=None,
            outputs=tree2_plots + [step3_time]
        )
        
        reparaphrase_button.click(
            interface.handle_reparaphrasing,
            inputs=None,
            outputs=reparaphrased_sentences_tabs + [step4_time]
        )
    
    return demo

if __name__ == "__main__":
    project_root = Path(__file__).parent.parent
    config_path = project_root / "utils" / "config.yaml"
    config = load_config(config_path)['PECCAVI_TEXT']
    
    create_gradio_interface(config).launch()