File size: 27,691 Bytes
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539b7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
539b7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import random
import torch
import logging
import string
from transformers import BertTokenizer, BertForMaskedLM
from nltk.corpus import stopwords
import nltk
from tqdm import tqdm

# Set logging to WARNING for a cleaner terminal.
logging.basicConfig(level=logging.WARNING, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# Ensure stopwords are downloaded
try:
    nltk.data.find('corpora/stopwords')
except LookupError:
    nltk.download('stopwords')

def clean_word(word):
    """More robust cleaning for consistent matching"""
    # Remove possessive 's before other punctuation
    if word.lower().endswith("'s"):
        word = word[:-2]
    return word.lower().strip().translate(str.maketrans('', '', string.punctuation))

class MaskingProcessor:
    def __init__(self, tokenizer, model):
        self.tokenizer = tokenizer
        self.model = model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.stop_words = set(stopwords.words('english'))
        tqdm.write(f"[MaskingProcessor] Initialized on device: {self.device}")

    def is_stopword(self, word):
        """Check if a word is a stopword, handling punctuation and case"""
        return clean_word(word) in self.stop_words

    def verify_and_correct_ngram_positions(self, sentence, common_ngrams):
        """Verify ngram positions match actual words in sentence and correct if needed."""
        words = sentence.split()
        corrected_ngrams = {}
        
        for ngram, positions in common_ngrams.items():
            corrected_positions = []
            ngram_words = ngram.split()
            
            # Convert ngram words to clean format for matching
            clean_ngram_words = [clean_word(word) for word in ngram_words]
            
            # Scan the sentence to find actual occurrences of the ngram
            for i in range(len(words) - len(ngram_words) + 1):
                is_match = True
                for j, ngram_word in enumerate(clean_ngram_words):
                    if clean_word(words[i + j]) != ngram_word:
                        is_match = False
                        break
                
                if is_match:
                    # Found a matching position, add it
                    corrected_positions.append((i, i + len(ngram_words) - 1))
            
            if corrected_positions:
                corrected_ngrams[ngram] = corrected_positions
            else:
                # Log the issue and perform a more flexible search
                print(f"Warning: Could not find exact match for '{ngram}' in the sentence.")
                print(f"Attempting flexible matching...")
                
                # Try a more flexible approach by looking for individual words
                for i in range(len(words)):
                    if clean_word(words[i]) == clean_ngram_words[0]:
                        # We found the first word of the ngram
                        if len(ngram_words) == 1 or (
                            i + len(ngram_words) <= len(words) and 
                            all(clean_word(words[i+j]).startswith(clean_ngram_words[j]) for j in range(len(ngram_words)))
                        ):
                            corrected_positions.append((i, i + len(ngram_words) - 1))
                
                if corrected_positions:
                    print(f"Found flexible matches for '{ngram}': {corrected_positions}")
                    corrected_ngrams[ngram] = corrected_positions
                else:
                    # If still no match, keep original positions as fallback
                    print(f"No matches found for '{ngram}'. Keeping original positions.")
                    corrected_ngrams[ngram] = positions
        
        # Log changes
        if corrected_ngrams != common_ngrams:
            print(f"Original ngram positions: {common_ngrams}")
            print(f"Corrected ngram positions: {corrected_ngrams}")
        
        return corrected_ngrams
    def in_any_ngram(self, idx, ngram_positions):
            """Check if an original sentence index is part of any n-gram span"""
            return any(start <= idx <= end for start, end in ngram_positions)
    def create_fallback_mask(self, sentence, ngrams):
        """Create a fallback mask when normal strategies fail."""
        try:
            words = sentence.split()
            if not words:
                return None
            
            # Find any non-stopword that isn't in an ngram
            ngram_positions = []
            for positions in ngrams.values():
                for start, end in positions:
                    ngram_positions.append((start, end))
            ngram_positions.sort()
            
            # Find first eligible word
            for idx, word in enumerate(words):
                if not self.is_stopword(word) and not self.in_any_ngram(idx, ngram_positions):
                    masked_words = words.copy()
                    masked_words[idx] = self.tokenizer.mask_token
                    tqdm.write(f"[INFO] Fallback mask created at position {idx}: '{word}'")
                    return " ".join(masked_words), [idx]
            
            # If no eligible word found, just mask the first non-stop word
            for idx, word in enumerate(words):
                if not self.is_stopword(word):
                    masked_words = words.copy()
                    masked_words[idx] = self.tokenizer.mask_token
                    tqdm.write(f"[INFO] Last resort fallback mask created at position {idx}: '{word}'")
                    return " ".join(masked_words), [idx]
            
            # If still nothing, mask the first word
            if words:
                masked_words = words.copy()
                masked_words[0] = self.tokenizer.mask_token
                return " ".join(masked_words), [0]
                
            return None
        except Exception as e:
            tqdm.write(f"[ERROR] Error creating fallback mask: {e}")
            return None

    def mask_sentence_random(self, sentence, common_ngrams):
        """Mask random non-stopwords that are not part of common ngrams with controlled positioning."""
        common_ngrams = self.verify_and_correct_ngram_positions(sentence, common_ngrams)
        tqdm.write(f"[MaskingProcessor] Masking (random) sentence: {sentence}")
        original_words = sentence.split()

        # Handle punctuation
        has_punctuation = False
        punctuation = ''
        if original_words and original_words[-1][-1] in ['.', ',', '!', '?', ';', ':', '"', "'"]:
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words[-1] = original_words[-1][:-1]
            if not original_words[-1]:  # If the word was just punctuation
                original_words.pop()

        # Get flattened ngram positions
        ngram_positions = []
        for positions in common_ngrams.values():
            for start, end in positions:
                ngram_positions.append((start, end))
        ngram_positions.sort()
        
        # Find all candidate indices (non-stopwords not in ngrams)
        candidate_indices = []
        for idx, word in enumerate(original_words):
            if not self.is_stopword(word) and not self.in_any_ngram(idx, ngram_positions):
                candidate_indices.append(idx)
        
        # Debug print candidate words
        print("Candidate words for masking:")
        for idx in candidate_indices:
            print(f"  Position {idx}: '{original_words[idx]}'")
        
        selected_indices = []
        if ngram_positions:
            # Before first ngram
            before_first = [idx for idx in candidate_indices if idx < ngram_positions[0][0]]
            if before_first:
                num_to_select = min(1, len(before_first))  # Select 1 word
                if num_to_select > 0:
                    selected = random.sample(before_first, num_to_select)
                    selected_indices.extend(selected)

            # Between ngrams
            for i in range(len(ngram_positions) - 1):
                between = [idx for idx in candidate_indices 
                        if ngram_positions[i][1] < idx < ngram_positions[i+1][0]]
                if between:
                    num_to_select = min(2, len(between))  # Select between 1-2 words
                    if num_to_select > 0:
                        selected = random.sample(between, num_to_select)
                        selected_indices.extend(selected)

            # After last ngram
            after_last = [idx for idx in candidate_indices if idx > ngram_positions[-1][1]]
            if after_last:
                num_to_select = min(1, len(after_last))  # Select 1 word
                if num_to_select > 0:
                    selected = random.sample(after_last, num_to_select)
                    selected_indices.extend(selected)
        else:
            # If no ngrams, pick up to 6 random candidates
            if candidate_indices:
                selected_indices = random.sample(candidate_indices, 
                                            min(6, len(candidate_indices)))
        
        masked_words = original_words.copy()
        for idx in selected_indices:
            masked_words[idx] = self.tokenizer.mask_token

        if has_punctuation:
            masked_words.append(punctuation)

        # Debug prints
        print("Original sentence:", sentence)
        print("Common ngrams:", common_ngrams)
        print("Common ngram positions:", ngram_positions)
        print("Candidate indices for masking:", candidate_indices)
        print("Selected for masking:", selected_indices)
        print("Masked sentence:", " ".join(masked_words))

        return " ".join(masked_words), selected_indices

    def mask_sentence_pseudorandom(self, sentence, common_ngrams):
        """Mask specific non-stopwords based on their position relative to ngrams."""
        common_ngrams = self.verify_and_correct_ngram_positions(sentence, common_ngrams)
        tqdm.write(f"[MaskingProcessor] Masking (pseudorandom) sentence: {sentence}")
        random.seed(3)  # Fixed seed for pseudorandom behavior
        original_words = sentence.split()

        # Handle punctuation
        has_punctuation = False
        punctuation = ''
        if original_words and original_words[-1][-1] in ['.', ',', '!', '?', ';', ':', '"', "'"]:
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words[-1] = original_words[-1][:-1]
            if not original_words[-1]:  # If the word was just punctuation
                original_words.pop()

        # Get flattened ngram positions
        ngram_positions = []
        for positions in common_ngrams.values():
            for start, end in positions:
                ngram_positions.append((start, end))
        ngram_positions.sort()
        
        # Find all candidate indices (non-stopwords not in ngrams)
        candidate_indices = []
        for idx, word in enumerate(original_words):
            if not self.is_stopword(word) and not self.in_any_ngram(idx, ngram_positions):
                candidate_indices.append(idx)
        
        # Debug print candidate words
        print("Candidate words for masking:")
        for idx in candidate_indices:
            print(f"  Position {idx}: '{original_words[idx]}'")
        
        # PSEUDORANDOM SPECIFIC LOGIC: 
        selected_indices = []
        if ngram_positions:
            # Before first ngram
            before_first = [idx for idx in candidate_indices if idx < ngram_positions[0][0]]
            if before_first:
                num_to_select = min(1, len(before_first))  # Select 1 word
                if num_to_select > 0:
                    selected = random.sample(before_first, num_to_select)
                    selected_indices.extend(selected)

            # Between ngrams
            for i in range(len(ngram_positions) - 1):
                between = [idx for idx in candidate_indices 
                        if ngram_positions[i][1] < idx < ngram_positions[i+1][0]]
                if between:
                    num_to_select = min(2, len(between))  # Select between 1-2 words
                    if num_to_select > 0:
                        selected = random.sample(between, num_to_select)
                        selected_indices.extend(selected)

            # After last ngram
            after_last = [idx for idx in candidate_indices if idx > ngram_positions[-1][1]]
            if after_last:
                num_to_select = min(1, len(after_last))  # Select 1 word
                if num_to_select > 0:
                    selected = random.sample(after_last, num_to_select)
                    selected_indices.extend(selected)
        else:
            # If no ngrams, pick up to 6 random candidates
            if candidate_indices:
                selected_indices = random.sample(candidate_indices, 
                                            min(6, len(candidate_indices)))
        
        masked_words = original_words.copy()
        for idx in selected_indices:
            masked_words[idx] = self.tokenizer.mask_token

        if has_punctuation:
            masked_words.append(punctuation)

        # Debug prints
        print("Original sentence:", sentence)
        print("Common ngrams:", common_ngrams)
        print("Common ngram positions:", ngram_positions)
        print("Candidate indices for masking:", candidate_indices)
        print("Selected for masking:", selected_indices)
        print("Masked sentence:", " ".join(masked_words))

        return " ".join(masked_words), selected_indices

    def mask_sentence_entropy(self, sentence, common_ngrams):
        """Mask words with highest entropy that are not part of common ngrams."""
        common_ngrams = self.verify_and_correct_ngram_positions(sentence, common_ngrams)
        tqdm.write(f"[MaskingProcessor] Masking (entropy) sentence: {sentence}")
        original_words = sentence.split()

        # Handle punctuation
        has_punctuation = False
        punctuation = ''
        if original_words and original_words[-1][-1] in ['.', ',', '!', '?', ';', ':', '"', "'"]:
            has_punctuation = True
            punctuation = original_words[-1][-1]
            original_words[-1] = original_words[-1][:-1]
            if not original_words[-1]:  # If the word was just punctuation
                original_words.pop()

        # Get flattened ngram positions
        ngram_positions = []
        for positions in common_ngrams.values():
            for start, end in positions:
                ngram_positions.append((start, end))
        ngram_positions.sort()
        
        # Find all candidate indices (non-stopwords not in ngrams)
        candidate_indices = []
        for idx, word in enumerate(original_words):
            if not self.is_stopword(word) and not self.in_any_ngram(idx, ngram_positions):
                candidate_indices.append(idx)
        
        # Debug print candidate words
        print("Candidate words for masking:")
        for idx in candidate_indices:
            print(f"  Position {idx}: '{original_words[idx]}'")
        
        # ENTROPY SPECIFIC LOGIC:
        # Calculate entropy for each candidate word
        selected_indices = []
        if candidate_indices:
            # Organize candidates by position relative to ngrams
            if ngram_positions:
                # Group candidates by position
                before_first = []
                between_ngrams = {}
                after_last = []
                
                for idx in candidate_indices:
                    if idx < ngram_positions[0][0]:
                        before_first.append(idx)
                    elif idx > ngram_positions[-1][1]:
                        after_last.append(idx)
                    else:
                        # Find which ngram gap this belongs to
                        for i in range(len(ngram_positions) - 1):
                            if ngram_positions[i][1] < idx < ngram_positions[i+1][0]:
                                if i not in between_ngrams:
                                    between_ngrams[i] = []
                                between_ngrams[i].append(idx)
                
                # Before first ngram: select 1-2 highest entropy words
                if before_first:
                    entropies = [(idx, self.calculate_word_entropy(sentence, idx)) for idx in before_first]
                    entropies.sort(key=lambda x: x[1], reverse=True)  # Sort by entropy (highest first)
                    num_to_select = min(1, len(entropies))  # Select 1 word
                    selected_indices.extend([idx for idx, _ in entropies[:num_to_select]])
                    
                # For each gap between ngrams: select 1-2 highest entropy words
                for group, indices in between_ngrams.items():
                    if indices:
                        entropies = [(idx, self.calculate_word_entropy(sentence, idx)) for idx in indices]
                        entropies.sort(key=lambda x: x[1], reverse=True)  # Sort by entropy (highest first)
                        num_to_select = min(2, len(entropies))  # Select between 1-2 words
                        selected_indices.extend([idx for idx, _ in entropies[:num_to_select]])
                        
                # After last ngram: select 1-2 highest entropy words
                if after_last:
                    entropies = [(idx, self.calculate_word_entropy(sentence, idx)) for idx in after_last]
                    entropies.sort(key=lambda x: x[1], reverse=True)  # Sort by entropy (highest first)
                    num_to_select = min(1, len(entropies))  # Select 1 word
                    selected_indices.extend([idx for idx, _ in entropies[:num_to_select]])
            else:
                # If no ngrams, calculate entropy for all candidates
                entropies = [(idx, self.calculate_word_entropy(sentence, idx)) for idx in candidate_indices]
                # Sort by entropy (highest first)
                entropies.sort(key=lambda x: x[1], reverse=True)
                # Take top 6 or all if fewer
                selected_indices = [idx for idx, _ in entropies[:min(6, len(entropies))]]
        
        masked_words = original_words.copy()
        for idx in selected_indices:
            masked_words[idx] = self.tokenizer.mask_token

        if has_punctuation:
            masked_words.append(punctuation)

        # Debug prints
        print("Original sentence:", sentence)
        print("Common ngrams:", common_ngrams)
        print("Common ngram positions:", ngram_positions)
        print("Candidate indices for masking:", candidate_indices)
        print("Selected for masking:", selected_indices)
        print("Masked sentence:", " ".join(masked_words))

        return " ".join(masked_words), selected_indices

    def calculate_mask_logits(self, original_sentence, original_mask_indices):
        """Calculate logits for masked positions."""
        logger.info(f"Calculating mask logits for sentence: {original_sentence}")
        words = original_sentence.split()
        mask_logits = {}
        for idx in original_mask_indices:
            masked_words = words.copy()
            masked_words[idx] = self.tokenizer.mask_token
            masked_sentence = " ".join(masked_words)
            input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"].to(self.device)
            mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1]
            with torch.no_grad():
                outputs = self.model(input_ids)
                logits = outputs.logits
            mask_logits_tensor = logits[0, mask_token_index, :]
            top_mask_logits, top_mask_indices = torch.topk(mask_logits_tensor, 100, dim=-1)
            top_tokens = []
            top_logits = []
            seen_words = set()
            for token_id, logit in zip(top_mask_indices[0], top_mask_logits[0]):
                token = self.tokenizer.convert_ids_to_tokens(token_id.item())
                if token.startswith('##'):
                    continue
                word = self.tokenizer.convert_tokens_to_string([token]).strip()
                if word and word not in seen_words:
                    seen_words.add(word)
                    top_tokens.append(word)
                    top_logits.append(logit.item())
                    if len(top_tokens) == 50:
                        break
            mask_logits[idx] = {
                "tokens": top_tokens,
                "logits": top_logits
            }
        logger.info("Completed calculating mask logits.")
        return mask_logits

    def calculate_word_entropy(self, sentence, word_position):
        """Calculate entropy for a word at a specific position."""
        logger.info(f"Calculating word entropy for position {word_position} in sentence: {sentence}")
        words = sentence.split()
        masked_words = words.copy()
        masked_words[word_position] = self.tokenizer.mask_token
        masked_sentence = " ".join(masked_words)
        input_ids = self.tokenizer(masked_sentence, return_tensors="pt")["input_ids"].to(self.device)
        mask_token_index = torch.where(input_ids == self.tokenizer.mask_token_id)[1]
        with torch.no_grad():
            outputs = self.model(input_ids)
            logits = outputs.logits
        probs = torch.nn.functional.softmax(logits[0, mask_token_index], dim=-1)
        entropy = -torch.sum(probs * torch.log(probs + 1e-9))
        logger.info(f"Computed entropy: {entropy.item()}")
        return entropy.item()

    def process_sentences(self, sentences_list, common_grams, method="random"):
        """Process multiple sentences with the specified masking method."""
        tqdm.write(f"[MaskingProcessor] Processing sentences using method: {method}")
        results = {}
        for sentence in tqdm(sentences_list, desc="Masking Sentences"):
            try:
                ngrams = common_grams.get(sentence, {})
                
                if method == "random":
                    masked_sentence, original_mask_indices = self.mask_sentence_random(sentence, ngrams)
                elif method == "pseudorandom":
                    masked_sentence, original_mask_indices = self.mask_sentence_pseudorandom(sentence, ngrams)
                else:  # entropy
                    masked_sentence, original_mask_indices = self.mask_sentence_entropy(sentence, ngrams)
                
                # Skip if no masks were applied
                if not original_mask_indices:
                    tqdm.write(f"[WARNING] No mask indices found for sentence with method {method}: {sentence[:50]}...")
                    # Create a fallback masked sentence with at least one mask
                    fallback_result = self.create_fallback_mask(sentence, ngrams)
                    if fallback_result:
                        masked_sentence, original_mask_indices = fallback_result
                        tqdm.write(f"[INFO] Created fallback mask for sentence")
                    else:
                        tqdm.write(f"[WARNING] Could not create fallback mask, skipping sentence")
                        continue
                
                logits = self.calculate_mask_logits(sentence, original_mask_indices)
                results[sentence] = {
                    "masked_sentence": masked_sentence,
                    "mask_logits": logits
                }
                logger.info(f"Processed sentence: {sentence}")
            except Exception as e:
                tqdm.write(f"[ERROR] Failed to process sentence with method {method}: {e}")
                tqdm.write(f"Sentence: {sentence[:100]}...")
                import traceback
                tqdm.write(traceback.format_exc())
        tqdm.write("[MaskingProcessor] Completed processing sentences.")
        return results

    @staticmethod
    def identify_common_ngrams(sentences, entities):
        """Enhanced to handle possessive forms better"""
        common_grams = {}
        
        # Pre-process entities to handle variations
        processed_entities = []
        for entity in entities:
            processed_entities.append(entity)
            # Add possessive form if not already there
            if not entity.endswith("'s") and not entity.endswith("s"):
                processed_entities.append(f"{entity}'s")
        
        for sentence in sentences:
            words = sentence.split()
            common_grams[sentence] = {}
            
            # Look for each entity in the sentence
            for entity in processed_entities:
                entity_words = entity.split()
                entity_len = len(entity_words)
                
                # Convert entity words for matching
                clean_entity_words = [clean_word(word) for word in entity_words]
                
                # Find all occurrences
                for i in range(len(words) - entity_len + 1):
                    is_match = True
                    for j, entity_word in enumerate(clean_entity_words):
                        if clean_word(words[i + j]) != entity_word:
                            is_match = False
                            break
                    
                    if is_match:
                        # Use canonical form from entity list for consistency
                        base_entity = entity
                        if entity.endswith("'s") and any(e == entity[:-2] for e in processed_entities):
                            base_entity = entity[:-2]
                            
                        if base_entity not in common_grams[sentence]:
                            common_grams[sentence][base_entity] = []
                        common_grams[sentence][base_entity].append((i, i + entity_len - 1))
        
        return common_grams
if __name__ == "__main__":
    #example test
    # test_sentence = "Kevin De Bruyne scored for Manchester City as they won the 2019-20 Premier League title."
    # entities to preserve
    # entities = ["Kevin De Bruyne", "Manchester City", "Premier League"]
    # Identify common n-grams
    common_grams = MaskingProcessor.identify_common_ngrams([test_sentence], entities)
    
    # Print detected n-grams
    print(f"Detected common n-grams: {common_grams[test_sentence]}")
    
    # Initialize the processor
    processor = MaskingProcessor(
        BertTokenizer.from_pretrained("bert-large-cased-whole-word-masking"), 
        BertForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
    )
    
    # Test all three masking methods
    print("\nTesting Random Masking:")
    masked_random, indices_random = processor.mask_sentence_random(test_sentence, common_grams[test_sentence])
    
    print("\nTesting Pseudorandom Masking:")
    masked_pseudorandom, indices_pseudorandom = processor.mask_sentence_pseudorandom(test_sentence, common_grams[test_sentence])
    
    print("\nTesting Entropy Masking:")
    masked_entropy, indices_entropy = processor.mask_sentence_entropy(test_sentence, common_grams[test_sentence])
    
    # Print results
    print("\nResults:")
    print(f"Original: {test_sentence}")
    print(f"Random Masked: {masked_random}")
    print(f"Pseudorandom Masked: {masked_pseudorandom}")
    print(f"Entropy Masked: {masked_entropy}")