File size: 10,353 Bytes
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d5ed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d5ed0
7e96e8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import random
import logging
from utils.masking_methods import MaskingProcessor
from tqdm import tqdm

# Configure logging to suppress INFO-level messages on the console.
logging.basicConfig(level=logging.WARNING, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

class SamplingProcessor:
    def __init__(self, tokenizer):
        """
        Initialize the SamplingProcessor.
        
        Args:
            tokenizer: BERT tokenizer instance
        """
        self.tokenizer = tokenizer
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        tqdm.write(f"[SamplingProcessor] Initialized on device: {self.device}")

    def sample_tokens(self, mask_logits_dict, masked_sentence, sampling_technique="temperature", temperature=1.0):
        """
        Sample tokens for each mask in the sentence using the specified sampling technique.
        
        Args:
            mask_logits_dict (dict): Dictionary of mask positions and their logits/tokens
            masked_sentence (str): Sentence with [MASK] tokens
            sampling_technique (str): Sampling method to use
            temperature (float): Temperature parameter for sampling
            
        Returns:
            str: Sentence with sampled tokens replacing masks
        """
        tqdm.write(f"[SamplingProcessor] Sampling tokens for: {masked_sentence}")
        print(f"[SamplingProcessor] Sampling tokens for: {masked_sentence}")
        words = masked_sentence.split()
        print(f"words: {words}")
        # Convert positions and logits to sorted list to process masks in order
        mask_positions = sorted(mask_logits_dict.keys())
        print(f"mask_positions: {mask_positions}")
        
        for mask_pos in mask_positions:
            mask_data = mask_logits_dict[mask_pos]
            # Move logits tensor to GPU
            mask_logits = torch.tensor(mask_data['logits']).to(self.device)
            candidate_tokens = mask_data['tokens']
            
            try:
                if sampling_technique == "inverse_transform":
                    probs = torch.softmax(mask_logits / temperature, dim=-1)
                    cumulative_probs = torch.cumsum(probs, dim=-1)
                    random_prob = random.random()
                    sampled_index = torch.where(cumulative_probs >= random_prob)[0][0].item()

                elif sampling_technique == "exponential_minimum":
                    probs = torch.softmax(mask_logits / temperature, dim=-1)
                    exp_probs = torch.exp(-torch.log(probs))
                    random_probs = torch.rand_like(exp_probs)
                    sampled_index = torch.argmax(random_probs * exp_probs).item()

                elif sampling_technique == "temperature":
                    mask_logits = torch.clamp(mask_logits, min=-1e8, max=1e8)
                    probs = torch.softmax(mask_logits / temperature, dim=-1)
                    if torch.any(torch.isnan(probs)) or torch.any(torch.isinf(probs)):
                        raise ValueError("The computed probabilities contain NaN or inf values.")
                    probs = torch.max(probs, torch.tensor(1e-8).to(self.device))
                    probs = probs / torch.sum(probs)
                    probs = probs.flatten()
                    if probs.size(0) > 1:
                        sampled_index = torch.multinomial(probs, 1).item()
                    else:
                        sampled_index = torch.argmax(probs).item()

                elif sampling_technique == 'greedy':
                    sampled_index = torch.argmax(mask_logits).item()
                
                elif sampling_technique == 'tournament':
                    # Apply temperature and get probabilities
                    probs = torch.softmax(mask_logits / temperature, dim=-1)
                    
                    # Number of candidates to select for the tournament
                    num_candidates = min(5, len(candidate_tokens))
                    
                    # Sample candidates based on their probabilities
                    if probs.size(0) > num_candidates:
                        candidate_indices = torch.multinomial(probs, num_candidates, replacement=False)
                    else:
                        # If we have fewer tokens than the number of candidates,
                        # just use all available tokens
                        candidate_indices = torch.arange(probs.size(0))
                    
                    # Run tournament rounds
                    while candidate_indices.size(0) > 1:
                        next_round = []
                        # Process pairs of candidates
                        for i in range(0, candidate_indices.size(0), 2):
                            # If we have an odd number of candidates, the last one gets a bye
                            if i + 1 >= candidate_indices.size(0):
                                next_round.append(candidate_indices[i].item())
                                continue
                            
                            candidate1, candidate2 = candidate_indices[i], candidate_indices[i+1]
                            prob1, prob2 = probs[candidate1], probs[candidate2]
                            
                            # Winner determined by probability comparison
                            winner = candidate1 if prob1 > prob2 else candidate2
                            next_round.append(winner.item())
                        
                        # Update candidates for next round
                        candidate_indices = torch.tensor(next_round).to(self.device)
                    
                    # The remaining candidate is our winner
                    sampled_index = candidate_indices[0].item()
                else:
                    raise ValueError(f"Unknown sampling technique: {sampling_technique}")

                # Use the sampled index to get the corresponding token
                sampled_token = candidate_tokens[sampled_index]
                # Remove ## if it's a subword token
                sampled_token = sampled_token.replace('##', '')
                words[mask_pos] = sampled_token
                logger.info(f"Sampled token '{sampled_token}' for mask position {mask_pos}.")

            except Exception as e:
                logger.error(f"Error sampling for position {mask_pos}: {str(e)}")
                continue

        sampled_sentence = " ".join(words)
        tqdm.write(f"[SamplingProcessor] Sampled sentence: {sampled_sentence}")
        return sampled_sentence

    def process_masked_sentences(self, results_dict, sampling_technique="temperature", temperature=1.0):
        """
        Process all masked sentences in the results dictionary.
        
        Args:
            results_dict (dict): Dictionary containing masked sentences and their logits
            sampling_technique (str): Sampling method to use
            temperature (float): Temperature parameter for sampling
            
        Returns:
            dict: Dictionary containing original, masked, and sampled sentences
        """
        tqdm.write("[SamplingProcessor] Starting sampling for masked sentences.")
        processed_results = {}
        # Wrap the iteration over each original sentence with tqdm
        for original_sentence, data in tqdm(results_dict.items(), desc="Sampling Masked Sentences"):
            masked_sentence = data["masked_sentence"]
            mask_logits = data["mask_logits"]
            
            sampled_sentence = self.sample_tokens(mask_logits,
                                                  masked_sentence,
                                                  sampling_technique,
                                                  temperature)
            processed_results[original_sentence] = {
                "masked_sentence": masked_sentence,
                "sampled_sentence": sampled_sentence
            }
            logger.info(f"Processed sampling for sentence: {original_sentence}")
        tqdm.write("[SamplingProcessor] Completed sampling for all sentences.")
        return processed_results


if __name__ == "__main__":
    sentences = [
        "The quick brown fox jumps over the lazy dog everyday.",
        "A speedy brown fox jumps over a lazy dog.",
        "A swift brown fox leaps over the lethargic dog."
    ]
    result_dict = {
        'The quick brown fox jumps over the lazy dog everyday.': {'brown fox': [(2, 3)], 'dog': [(8, 8)]}, 
        'A speedy brown fox jumps over a lazy dog.': {'brown fox': [(2, 3)], 'dog': [(8, 8)]}, 
        'A swift brown fox leaps over the lethargic dog.': {'brown fox': [(2, 3)], 'dog': [(8, 8)]}
    }

    # First, mask the sentences
    masking_processor = MaskingProcessor()
    masking_results = masking_processor.process_sentences(sentences, result_dict)

    # Then, sample replacements for the masks
    sampling_processor = SamplingProcessor(masking_processor.tokenizer)
    
    # Try different sampling techniques
    sampling_techniques = ["temperature", "greedy", "inverse_transform", "exponential_minimum", "Tournament"]
    
    for technique in sampling_techniques:
        logger.info(f"Sampling using technique: {technique}")
        sampled_results = sampling_processor.process_masked_sentences(
            masking_results,
            sampling_technique=technique,
            temperature=1.0
        )

        '''
            {
                "original_sentence_1": 
                {
                    "masked_sentence": "sentence with [MASK] tokens",
                    "sampling_method1": "sentence with sampled tokens",
                },
                "original_sentence_2": 
                {
                    "masked_sentence": "sentence with [MASK] tokens",
                    "sampling_method": "sentence with sampled tokens"
                },
                # ... and so on for each input sentence
            }, 

        '''
        
        for original_sentence, result in sampled_results.items():
            logger.info(f"Original: {original_sentence}")
            logger.info(f"Masked: {result['masked_sentence']}")
            logger.info(f"Sampled: {result['sampled_sentence']}")
            logger.info("---")