File size: 27,369 Bytes
b26e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
<!--# [D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement](https://arxiv.org/abs/xxxxxx) -->

English | [简体中文](README_cn.md) | [日本語](README_ja.md) | [English Blog](src/zoo/dfine/blog.md) | [中文博客](src/zoo/dfine/blog_cn.md)

<h2 align="center">
  D-FINE: Redefine Regression Task of DETRs as Fine&#8209;grained&nbsp;Distribution&nbsp;Refinement
</h2>



<p align="center">
    <a href="https://huggingface.co/spaces/developer0hye/D-FINE">
        <img alt="hf" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
    </a>
    <a href="https://github.com/Peterande/D-FINE/blob/master/LICENSE">
        <img alt="license" src="https://img.shields.io/badge/LICENSE-Apache%202.0-blue">
    </a>
    <a href="https://github.com/Peterande/D-FINE/pulls">
        <img alt="prs" src="https://img.shields.io/github/issues-pr/Peterande/D-FINE">
    </a>
    <a href="https://github.com/Peterande/D-FINE/issues">
        <img alt="issues" src="https://img.shields.io/github/issues/Peterande/D-FINE?color=olive">
    </a>
    <a href="https://arxiv.org/abs/2410.13842">
        <img alt="arXiv" src="https://img.shields.io/badge/arXiv-2410.13842-red">
    </a>
<!--     <a href="mailto: [email protected]">
        <img alt="email" src="https://img.shields.io/badge/contact_me-email-yellow">
    </a> -->
      <a href="https://results.pre-commit.ci/latest/github/Peterande/D-FINE/master">
        <img alt="pre-commit.ci status" src="https://results.pre-commit.ci/badge/github/Peterande/D-FINE/master.svg">
    </a>
    <a href="https://github.com/Peterande/D-FINE">
        <img alt="stars" src="https://img.shields.io/github/stars/Peterande/D-FINE">
    </a>
</p>



<p align="center">
    📄 This is the official implementation of the paper:
    <br>
    <a href="https://arxiv.org/abs/2410.13842">D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement</a>
</p>



<p align="center">
Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu
</p>

<p align="center">
University of Science and Technology of China
</p>

<p align="center">
    <a href="https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=d-fine-redefine-regression-task-in-detrs-as">
        <img alt="sota" src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/d-fine-redefine-regression-task-in-detrs-as/real-time-object-detection-on-coco">
    </a>
</p>

<!-- <table><tr>
<td><img src=https://github.com/Peterande/storage/blob/master/latency.png border=0 width=333></td>
<td><img src=https://github.com/Peterande/storage/blob/master/params.png border=0 width=333></td>
<td><img src=https://github.com/Peterande/storage/blob/master/flops.png border=0 width=333></td>
</tr></table> -->

<p align="center">
<strong>If you like D-FINE, please give us a ⭐! Your support motivates us to keep improving!</strong>
</p>

<p align="center">
    <img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/stats_padded.png" width="1000">
</p>

D-FINE is a powerful real-time object detector that redefines the bounding box regression task in DETRs as Fine-grained Distribution Refinement (FDR) and introduces Global Optimal Localization Self-Distillation (GO-LSD), achieving outstanding performance without introducing additional inference and training costs.

<details open>
<summary> Video </summary>

We conduct object detection using D-FINE and YOLO11 on a complex street scene video from [YouTube](https://www.youtube.com/watch?v=CfhEWj9sd9A). Despite challenging conditions such as backlighting, motion blur, and dense crowds, D-FINE-X successfully detects nearly all targets, including subtle small objects like backpacks, bicycles, and traffic lights. Its confidence scores and the localization precision for blurred edges are significantly higher than those of YOLO11.

<!-- We use D-FINE and YOLO11 on a street scene video from [YouTube](https://www.youtube.com/watch?v=CfhEWj9sd9A). Despite challenges like backlighting, motion blur, and dense crowds, D-FINE-X outperforms YOLO11x, detecting more objects with higher confidence and better precision. -->

https://github.com/user-attachments/assets/e5933d8e-3c8a-400e-870b-4e452f5321d9

</details>

## 🚀 Updates
- [x] **\[2024.10.18\]** Release D-FINE series.
- [x] **\[2024.10.25\]** Add custom dataset finetuning configs ([#7](https://github.com/Peterande/D-FINE/issues/7)).
- [x] **\[2024.10.30\]** Update D-FINE-L (E25) pretrained model, with performance improved by 2.0%.
- [x] **\[2024.11.07\]** Release **D-FINE-N**, achiving 42.8% AP<sup>val</sup> on COCO @ 472 FPS<sup>T4</sup>!

## Model Zoo

### COCO
| Model | Dataset | AP<sup>val</sup> | #Params | Latency | GFLOPs | config | checkpoint | logs |
| :---: | :---: | :---: |  :---: | :---: | :---: | :---: | :---: | :---: |
**D&#8209;FINE&#8209;N** | COCO | **42.8** | 4M | 2.12ms | 7 | [yml](./configs/dfine/dfine_hgnetv2_n_coco.yml) | [42.8](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_n_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_n_coco_log.txt)
**D&#8209;FINE&#8209;S** | COCO | **48.5** | 10M | 3.49ms | 25 | [yml](./configs/dfine/dfine_hgnetv2_s_coco.yml) | [48.5](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_s_coco_log.txt)
**D&#8209;FINE&#8209;M** | COCO | **52.3** | 19M | 5.62ms | 57 | [yml](./configs/dfine/dfine_hgnetv2_m_coco.yml) | [52.3](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_m_coco_log.txt)
**D&#8209;FINE&#8209;L** | COCO | **54.0** | 31M | 8.07ms | 91 | [yml](./configs/dfine/dfine_hgnetv2_l_coco.yml) | [54.0](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_l_coco_log.txt)
**D&#8209;FINE&#8209;X** | COCO | **55.8** | 62M | 12.89ms | 202 | [yml](./configs/dfine/dfine_hgnetv2_x_coco.yml) | [55.8](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/coco/dfine_x_coco_log.txt)


### Objects365+COCO
| Model | Dataset | AP<sup>val</sup> | #Params | Latency | GFLOPs | config | checkpoint | logs |
| :---: | :---: | :---: |  :---: | :---: | :---: | :---: | :---: | :---: |
**D&#8209;FINE&#8209;S** | Objects365+COCO | **50.7** | 10M | 3.49ms | 25 | [yml](./configs/dfine/objects365/dfine_hgnetv2_s_obj2coco.yml) | [50.7](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj2coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_s_obj2coco_log.txt)
**D&#8209;FINE&#8209;M** | Objects365+COCO | **55.1** | 19M | 5.62ms | 57 | [yml](./configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml) | [55.1](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj2coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_m_obj2coco_log.txt)
**D&#8209;FINE&#8209;L** | Objects365+COCO | **57.3** | 31M | 8.07ms | 91 | [yml](./configs/dfine/objects365/dfine_hgnetv2_l_obj2coco.yml) | [57.3](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj2coco_e25.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_l_obj2coco_log_e25.txt)
**D&#8209;FINE&#8209;X** | Objects365+COCO | **59.3** | 62M | 12.89ms | 202 | [yml](./configs/dfine/objects365/dfine_hgnetv2_x_obj2coco.yml) | [59.3](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj2coco.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj2coco/dfine_x_obj2coco_log.txt)

**We highly recommend that you use the Objects365 pre-trained model for fine-tuning:**

⚠️ **Important**: Please note that this is generally beneficial for complex scene understanding. If your categories are very simple, it might lead to overfitting and suboptimal performance.
<details>
<summary><strong> 🔥 Pretrained Models on Objects365 (Best generalization) </strong></summary>

| Model | Dataset | AP<sup>val</sup> | AP<sup>5000</sup> | #Params | Latency | GFLOPs | config | checkpoint | logs |
| :---: | :---: | :---: |  :---: | :---: | :---: | :---: | :---: | :---: | :---: |
**D&#8209;FINE&#8209;S** | Objects365 | **31.0** | **30.5** | 10M | 3.49ms | 25 | [yml](./configs/dfine/objects365/dfine_hgnetv2_s_obj365.yml) | [30.5](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_s_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_s_obj365_log.txt)
**D&#8209;FINE&#8209;M** | Objects365 | **38.6** | **37.4** | 19M | 5.62ms | 57 | [yml](./configs/dfine/objects365/dfine_hgnetv2_m_obj365.yml) | [37.4](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_m_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_m_obj365_log.txt)
**D&#8209;FINE&#8209;L** | Objects365 | - | **40.6** | 31M | 8.07ms | 91 | [yml](./configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml) | [40.6](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_l_obj365_log.txt)
**D&#8209;FINE&#8209;L (E25)** | Objects365 | **44.7** | **42.6** | 31M | 8.07ms | 91 | [yml](./configs/dfine/objects365/dfine_hgnetv2_l_obj365.yml) | [42.6](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_l_obj365_e25.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_l_obj365_log_e25.txt)
**D&#8209;FINE&#8209;X** | Objects365 | **49.5** | **46.5** | 62M | 12.89ms | 202 | [yml](./configs/dfine/objects365/dfine_hgnetv2_x_obj365.yml) | [46.5](https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_x_obj365.pth) | [url](https://raw.githubusercontent.com/Peterande/storage/refs/heads/master/logs/obj365/dfine_x_obj365_log.txt)
- **E25**: Re-trained and extended the pretraining to 25 epochs.
- **AP<sup>val</sup>** is evaluated on *Objects365* full validation set.
- **AP<sup>5000</sup>** is evaluated on the first 5000 samples of the *Objects365* validation set.
</details>

**Notes:**
- **AP<sup>val</sup>** is evaluated on *MSCOCO val2017* dataset.
- **Latency** is evaluated on a single T4 GPU with $batch\\_size = 1$, $fp16$, and $TensorRT==10.4.0$.
- **Objects365+COCO** means finetuned model on *COCO* using pretrained weights trained on *Objects365*.



## Quick start

### Setup

```shell
conda create -n dfine python=3.11.9
conda activate dfine
pip install -r requirements.txt
```


### Data Preparation

<details>
<summary> COCO2017 Dataset </summary>

1. Download COCO2017 from [OpenDataLab](https://opendatalab.com/OpenDataLab/COCO_2017) or [COCO](https://cocodataset.org/#download).
1. Modify paths in [coco_detection.yml](./configs/dataset/coco_detection.yml)

    ```yaml
    train_dataloader:
        img_folder: /data/COCO2017/train2017/
        ann_file: /data/COCO2017/annotations/instances_train2017.json
    val_dataloader:
        img_folder: /data/COCO2017/val2017/
        ann_file: /data/COCO2017/annotations/instances_val2017.json
    ```

</details>

<details>
<summary> Objects365 Dataset </summary>

1. Download Objects365 from [OpenDataLab](https://opendatalab.com/OpenDataLab/Objects365).

2. Set the Base Directory:
```shell
export BASE_DIR=/data/Objects365/data
```

3. Extract and organize the downloaded files, resulting directory structure:

```shell
${BASE_DIR}/train
├── images
│   ├── v1
│   │   ├── patch0
│   │   │   ├── 000000000.jpg
│   │   │   ├── 000000001.jpg
│   │   │   └── ... (more images)
│   ├── v2
│   │   ├── patchx
│   │   │   ├── 000000000.jpg
│   │   │   ├── 000000001.jpg
│   │   │   └── ... (more images)
├── zhiyuan_objv2_train.json
```

```shell
${BASE_DIR}/val
├── images
│   ├── v1
│   │   ├── patch0
│   │   │   ├── 000000000.jpg
│   │   │   └── ... (more images)
│   ├── v2
│   │   ├── patchx
│   │   │   ├── 000000000.jpg
│   │   │   └── ... (more images)
├── zhiyuan_objv2_val.json
```

4. Create a New Directory to Store Images from the Validation Set:
```shell
mkdir -p ${BASE_DIR}/train/images_from_val
```

5. Copy the v1 and v2 folders from the val directory into the train/images_from_val directory
```shell
cp -r ${BASE_DIR}/val/images/v1 ${BASE_DIR}/train/images_from_val/
cp -r ${BASE_DIR}/val/images/v2 ${BASE_DIR}/train/images_from_val/
```

6. Run remap_obj365.py to merge a subset of the validation set into the training set. Specifically, this script moves samples with indices between 5000 and 800000 from the validation set to the training set.
```shell
python tools/remap_obj365.py --base_dir ${BASE_DIR}
```


7. Run the resize_obj365.py script to resize any images in the dataset where the maximum edge length exceeds 640 pixels. Use the updated JSON file generated in Step 5 to process the sample data. Ensure that you resize images in both the train and val datasets to maintain consistency.
```shell
python tools/resize_obj365.py --base_dir ${BASE_DIR}
```

8. Modify paths in [obj365_detection.yml](./configs/dataset/obj365_detection.yml)

    ```yaml
    train_dataloader:
        img_folder: /data/Objects365/data/train
        ann_file: /data/Objects365/data/train/new_zhiyuan_objv2_train_resized.json
    val_dataloader:
        img_folder: /data/Objects365/data/val/
        ann_file: /data/Objects365/data/val/new_zhiyuan_objv2_val_resized.json
    ```


</details>

<details>
<summary>CrowdHuman</summary>

Download COCO format dataset here: [url](https://aistudio.baidu.com/datasetdetail/231455)

</details>

<details>
<summary>Custom Dataset</summary>

To train on your custom dataset, you need to organize it in the COCO format. Follow the steps below to prepare your dataset:

1. **Set `remap_mscoco_category` to `False`:**

    This prevents the automatic remapping of category IDs to match the MSCOCO categories.

    ```yaml
    remap_mscoco_category: False
    ```

2. **Organize Images:**

    Structure your dataset directories as follows:

    ```shell
    dataset/
    ├── images/
    │   ├── train/
    │   │   ├── image1.jpg
    │   │   ├── image2.jpg
    │   │   └── ...
    │   ├── val/
    │   │   ├── image1.jpg
    │   │   ├── image2.jpg
    │   │   └── ...
    └── annotations/
        ├── instances_train.json
        ├── instances_val.json
        └── ...
    ```

    - **`images/train/`**: Contains all training images.
    - **`images/val/`**: Contains all validation images.
    - **`annotations/`**: Contains COCO-formatted annotation files.

3. **Convert Annotations to COCO Format:**

    If your annotations are not already in COCO format, you'll need to convert them. You can use the following Python script as a reference or utilize existing tools:

    ```python
    import json

    def convert_to_coco(input_annotations, output_annotations):
        # Implement conversion logic here
        pass

    if __name__ == "__main__":
        convert_to_coco('path/to/your_annotations.json', 'dataset/annotations/instances_train.json')
    ```

4. **Update Configuration Files:**

    Modify your [custom_detection.yml](./configs/dataset/custom_detection.yml).

    ```yaml
    task: detection

    evaluator:
      type: CocoEvaluator
      iou_types: ['bbox', ]

    num_classes: 777 # your dataset classes
    remap_mscoco_category: False

    train_dataloader:
      type: DataLoader
      dataset:
        type: CocoDetection
        img_folder: /data/yourdataset/train
        ann_file: /data/yourdataset/train/train.json
        return_masks: False
        transforms:
          type: Compose
          ops: ~
      shuffle: True
      num_workers: 4
      drop_last: True
      collate_fn:
        type: BatchImageCollateFunction

    val_dataloader:
      type: DataLoader
      dataset:
        type: CocoDetection
        img_folder: /data/yourdataset/val
        ann_file: /data/yourdataset/val/ann.json
        return_masks: False
        transforms:
          type: Compose
          ops: ~
      shuffle: False
      num_workers: 4
      drop_last: False
      collate_fn:
        type: BatchImageCollateFunction
    ```

</details>


## Usage
<details open>
<summary> COCO2017 </summary>

<!-- <summary>1. Training </summary> -->
1. Set Model
```shell
export model=l  # n s m l x
```

2. Training
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0
```

<!-- <summary>2. Testing </summary> -->
3. Testing
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pth
```

<!-- <summary>3. Tuning </summary> -->
4. Tuning
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --use-amp --seed=0 -t model.pth
```
</details>


<details>
<summary> Objects365 to COCO2017 </summary>

1. Set Model
```shell
export model=l  # n s m l x
```

2. Training on Objects365
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj365.yml --use-amp --seed=0
```

3. Tuning on COCO2017
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/objects365/dfine_hgnetv2_${model}_obj2coco.yml --use-amp --seed=0 -t model.pth
```

<!-- <summary>2. Testing </summary> -->
4. Testing
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml --test-only -r model.pth
```
</details>


<details>
<summary> Custom Dataset </summary>

1. Set Model
```shell
export model=l  # n s m l x
```

2. Training on Custom Dataset
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0
```
<!-- <summary>2. Testing </summary> -->
3. Testing
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --test-only -r model.pth
```

4. Tuning on Custom Dataset
```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/objects365/dfine_hgnetv2_${model}_obj2custom.yml --use-amp --seed=0 -t model.pth
```

5. **[Optional]** Modify Class Mappings:

When using the Objects365 pre-trained weights to train on your custom dataset, the example assumes that your dataset only contains the classes `'Person'` and `'Car'`. For faster convergence, you can modify `self.obj365_ids` in `src/solver/_solver.py` as follows:


```python
self.obj365_ids = [0, 5]  # Person, Cars
```
You can replace these with any corresponding classes from your dataset. The list of Objects365 classes with their corresponding IDs:
https://github.com/Peterande/D-FINE/blob/352a94ece291e26e1957df81277bef00fe88a8e3/src/solver/_solver.py#L330

New training command:

```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --master_port=7777 --nproc_per_node=4 train.py -c configs/dfine/custom/dfine_hgnetv2_${model}_custom.yml --use-amp --seed=0 -t model.pth
```

However, if you don't wish to modify the class mappings, the pre-trained Objects365 weights will still work without any changes. Modifying the class mappings is optional and can potentially accelerate convergence for specific tasks.



</details>

<details>
<summary> Customizing Batch Size </summary>

For example, if you want to double the total batch size when training D-FINE-L on COCO2017, here are the steps you should follow:

1. **Modify your [dataloader.yml](./configs/dfine/include/dataloader.yml)** to increase the `total_batch_size`:

    ```yaml
    train_dataloader:
        total_batch_size: 64  # Previously it was 32, now doubled
    ```

2. **Modify your [dfine_hgnetv2_l_coco.yml](./configs/dfine/dfine_hgnetv2_l_coco.yml)**. Here’s how the key parameters should be adjusted:

    ```yaml
    optimizer:
    type: AdamW
    params:
        -
        params: '^(?=.*backbone)(?!.*norm|bn).*$'
        lr: 0.000025  # doubled, linear scaling law
        -
        params: '^(?=.*(?:encoder|decoder))(?=.*(?:norm|bn)).*$'
        weight_decay: 0.

    lr: 0.0005  # doubled, linear scaling law
    betas: [0.9, 0.999]
    weight_decay: 0.0001  # need a grid search

    ema:  # added EMA settings
        decay: 0.9998  # adjusted by 1 - (1 - decay) * 2
        warmups: 500  # halved

    lr_warmup_scheduler:
        warmup_duration: 250  # halved
    ```

</details>


<details>
<summary> Customizing Input Size </summary>

If you'd like to train **D-FINE-L** on COCO2017 with an input size of 320x320, follow these steps:

1. **Modify your [dataloader.yml](./configs/dfine/include/dataloader.yml)**:

    ```yaml

    train_dataloader:
    dataset:
        transforms:
            ops:
                - {type: Resize, size: [320, 320], }
    collate_fn:
        base_size: 320
    dataset:
        transforms:
            ops:
                - {type: Resize, size: [320, 320], }
    ```

2. **Modify your [dfine_hgnetv2.yml](./configs/dfine/include/dfine_hgnetv2.yml)**:

    ```yaml
    eval_spatial_size: [320, 320]
    ```

</details>

## Tools
<details>
<summary> Deployment </summary>

<!-- <summary>4. Export onnx </summary> -->
1. Setup
```shell
pip install onnx onnxsim
export model=l  # n s m l x
```

2. Export onnx
```shell
python tools/deployment/export_onnx.py --check -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth
```

3. Export [tensorrt](https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html)
```shell
trtexec --onnx="model.onnx" --saveEngine="model.engine" --fp16
```

</details>

<details>
<summary> Inference (Visualization) </summary>


1. Setup
```shell
pip install -r tools/inference/requirements.txt
export model=l  # n s m l x
```


<!-- <summary>5. Inference </summary> -->
2. Inference (onnxruntime / tensorrt / torch)

Inference on images and videos is now supported.
```shell
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg  # video.mp4
python tools/inference/trt_inf.py --trt model.engine --input image.jpg
python tools/inference/torch_inf.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth --input image.jpg --device cuda:0
```
</details>

<details>
<summary> Benchmark </summary>

1. Setup
```shell
pip install -r tools/benchmark/requirements.txt
export model=l  # n s m l x
```

<!-- <summary>6. Benchmark </summary> -->
2. Model FLOPs, MACs, and Params
```shell
python tools/benchmark/get_info.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml
```

2. TensorRT Latency
```shell
python tools/benchmark/trt_benchmark.py --COCO_dir path/to/COCO2017 --engine_dir model.engine
```
</details>

<details>
<summary> Fiftyone Visualization  </summary>

1. Setup
```shell
pip install fiftyone
export model=l  # n s m l x
```
4. Voxel51 Fiftyone Visualization ([fiftyone](https://github.com/voxel51/fiftyone))
```shell
python tools/visualization/fiftyone_vis.py -c configs/dfine/dfine_hgnetv2_${model}_coco.yml -r model.pth
```
</details>

<details>
<summary> Others </summary>

1. Auto Resume Training
```shell
bash reference/safe_training.sh
```

2. Converting Model Weights
```shell
python reference/convert_weight.py model.pth
```
</details>

## Figures and Visualizations

<details>
<summary> FDR and GO-LSD </summary>

1. Overview of D-FINE with FDR. The probability distributions that act as a more fine-
grained intermediate representation are iteratively refined by the decoder layers in a residual manner.
Non-uniform weighting functions are applied to allow for finer localization.

<p align="center">
    <img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/fdr-1.jpg" alt="Fine-grained Distribution Refinement Process" width="1000">
</p>

2. Overview of GO-LSD process. Localization knowledge from the final layer’s refined
distributions is distilled into earlier layers through DDF loss with decoupled weighting strategies.

<p align="center">
    <img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/go_lsd-1.jpg" alt="GO-LSD Process" width="1000">
</p>

</details>

<details open>
<summary> Distributions </summary>

Visualizations of FDR across detection scenarios with initial and refined bounding boxes, along with unweighted and weighted distributions.

<p align="center">
    <img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/merged_image.jpg" width="1000">
</p>

</details>

<details>
<summary> Hard Cases </summary>

The following visualization demonstrates D-FINE's predictions in various complex detection scenarios. These include cases with occlusion, low-light conditions, motion blur, depth of field effects, and densely populated scenes. Despite these challenges, D-FINE consistently produces accurate localization results.

<p align="center">
    <img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/hard_case-1.jpg" alt="D-FINE Predictions in Challenging Scenarios" width="1000">
</p>

</details>


<!-- <div style="display: flex; flex-wrap: wrap; justify-content: center; margin: 0; padding: 0;">
    <img src="https://raw.githubusercontent.com/Peterande/storage/master/figs/merged_image.jpg" style="width:99.96%; margin: 0; padding: 0;" />
</div>

<table><tr>
<td><img src=https://raw.githubusercontent.com/Peterande/storage/master/figs/merged_image.jpg border=0 width=1000></td>
</tr></table> -->




## Citation
If you use `D-FINE` or its methods in your work, please cite the following BibTeX entries:
<details open>
<summary> bibtex </summary>

```latex
@misc{peng2024dfine,
      title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement},
      author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu},
      year={2024},
      eprint={2410.13842},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```
</details>

## Acknowledgement
Our work is built upon [RT-DETR](https://github.com/lyuwenyu/RT-DETR).
Thanks to the inspirations from [RT-DETR](https://github.com/lyuwenyu/RT-DETR), [GFocal](https://github.com/implus/GFocal), [LD](https://github.com/HikariTJU/LD), and [YOLOv9](https://github.com/WongKinYiu/yolov9).

✨ Feel free to contribute and reach out if you have any questions! ✨