File size: 2,196 Bytes
b26e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import onnxruntime as ort
import torch
import torchvision
from utils import yolo_insert_nms


class YOLO11(torch.nn.Module):
    def __init__(self, name) -> None:
        super().__init__()
        from ultralytics import YOLO
        # Load a model
        # build a new model from scratch
        # model = YOLO(f'{name}.yaml')

        # load a pretrained model (recommended for training)
        model = YOLO("yolo11n.pt")
        self.model = model.model

    def forward(self, x):
        """https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/tasks.py#L216"""
        pred: torch.Tensor = self.model(x)[0]  # n 84 8400,
        pred = pred.permute(0, 2, 1)
        boxes, scores = pred.split([4, 80], dim=-1)
        boxes = torchvision.ops.box_convert(boxes, in_fmt="cxcywh", out_fmt="xyxy")

        return boxes, scores


def export_onnx(name="yolov8n"):
    """export onnx"""
    m = YOLO11(name)

    x = torch.rand(1, 3, 640, 640)
    dynamic_axes = {"image": {0: "-1"}}
    torch.onnx.export(
        m,
        x,
        f"{name}.onnx",
        input_names=["image"],
        output_names=["boxes", "scores"],
        opset_version=13,
        dynamic_axes=dynamic_axes,
    )

    data = np.random.rand(1, 3, 640, 640).astype(np.float32)
    sess = ort.InferenceSession(f"{name}.onnx")
    _ = sess.run(output_names=None, input_feed={"image": data})

    import onnx
    import onnxslim

    model_onnx = onnx.load(f"{name}.onnx")
    model_onnx = onnxslim.slim(model_onnx)
    onnx.save(model_onnx, f"{name}.onnx")


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--name", type=str, default="yolo11n_tuned")
    parser.add_argument("--score_threshold", type=float, default=0.01)
    parser.add_argument("--iou_threshold", type=float, default=0.6)
    parser.add_argument("--max_output_boxes", type=int, default=300)
    args = parser.parse_args()

    export_onnx(name=args.name)

    yolo_insert_nms(
        path=f"{args.name}.onnx",
        score_threshold=args.score_threshold,
        iou_threshold=args.iou_threshold,
        max_output_boxes=args.max_output_boxes,
    )