Spaces:
No application file
No application file
File size: 14,338 Bytes
b26e93d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
/**
* NOTE: Convert model with --fp16 may lead to incorrect results
*/
#include <iostream>
#include <string>
#include <vector>
#include <memory>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <cuda_runtime_api.h>
#define CUDA_CHECK(call) \
do \
{ \
const cudaError_t error_code = call; \
if (error_code != cudaSuccess) \
{ \
printf("CUDA_CHECK Error:\n"); \
printf(" File: %s\n", __FILE__); \
printf(" Line: %d\n", __LINE__); \
printf(" Error code: %d\n", error_code); \
printf(" Error text: %s\n", cudaGetErrorString(error_code)); \
exit(1); \
} \
} while (0)
struct Object
{
cv::Rect_<float> rect;
int label;
float prob;
};
const std::vector<std::string> labels = {
"Person", "Bicycle", "Car", "Motorcycle", "Airplane", "Bus", "Train",
"Truck", "Boat", "Traffic light", "Fire hydrant", "Stop sign", "Parking meter",
"Bench", "Bird", "Cat", "Dog", "Horse", "Sheep", "Cow", "Elephant", "Bear",
"Zebra", "Giraffe", "Backpack", "Umbrella", "Handbag", "Tie", "Suitcase",
"Frisbee", "Skis", "Snowboard", "Sports ball", "Kite", "Baseball bat",
"Baseball glove", "Skateboard", "Surfboard", "Tennis racket", "Bottle",
"Wine glass", "Cup", "Fork", "Knife", "Spoon", "Bowl", "Banana", "Apple",
"Sandwich", "Orange", "Broccoli", "Carrot", "Hot dog", "Pizza", "Donut",
"Cake", "Chair", "Couch", "Potted plant", "Bed", "Dining table", "Toilet",
"Tv", "Laptop", "Mouse", "Remote", "Keyboard", "Cell phone", "Microwave",
"Oven", "Toaster", "Sink", "Refrigerator", "Book", "Clock", "Vase", "Scissors",
"Teddy bear", "Hair drier", "Toothbrush"
};
class Logger : public nvinfer1::ILogger
{
public:
void log(Severity severity, const char *msg) noexcept override
{
if (severity <= nvinfer1::ILogger::Severity::kWARNING)
{
std::cerr << "[TensorRT] ";
switch (severity)
{
case nvinfer1::ILogger::Severity::kINTERNAL_ERROR: std::cerr << "INTERNAL_ERROR: "; break;
case nvinfer1::ILogger::Severity::kERROR: std::cerr << "ERROR: "; break;
case nvinfer1::ILogger::Severity::kWARNING: std::cerr << "WARNING: "; break;
case nvinfer1::ILogger::Severity::kINFO: std::cerr << "INFO: "; break;
case nvinfer1::ILogger::Severity::kVERBOSE: std::cerr << "VERBOSE: "; break;
}
std::cerr << msg << "\n";
}
}
};
static Logger logger;
bool DrawObjects(cv::Mat &image, const std::vector<Object> &objects,
const std::vector<std::string> &labels, bool isSilent)
{
for (auto obj : objects)
{
if (obj.label >= static_cast<int>(labels.size()))
return false;
if (isSilent != true)
std::printf("%s = %.2f%% at (%.1f, %.1f) %.1f x %.1f\n", labels[obj.label].c_str(), obj.prob * 100.0f,
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
char text[256];
snprintf(text, sizeof(text), "%s %.1f%%", labels[obj.label].c_str(), obj.prob * 100.0f);
auto scalar = cv::Scalar(255, 255, 255);
cv::rectangle(image, obj.rect, scalar, 2);
int baseLine = 5;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.75, 1, &baseLine);
int x = obj.rect.x - 1;
int y = obj.rect.y - label_size.height - baseLine;
y = std::max(0, y);
if (x + label_size.width > image.cols)
x = image.cols - label_size.width;
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
scalar, -1);
cv::putText(image, text, cv::Point(x, y + label_size.height + baseLine / 2),
cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 0, 0), 2);
}
return true;
}
size_t CountElement(const nvinfer1::Dims &dims)
{
int64_t total = 1;
for (int32_t i = 0; i < dims.nbDims; ++i)
total *= dims.d[i];
return static_cast<size_t>(total);
}
template <typename T>
T Clamp(T val, T min, T max)
{
return val > min ? (val < max ? val : max) : min;
}
void GetLetterboxDimensions(
const int img_rows, const int img_cols,
const int target_size,
int &resize_rows, int &resize_cols, int &pad_rows, int &pad_cols, float &scale
)
{
scale = static_cast<float>(target_size) / std::max(img_rows, img_cols);
resize_rows = static_cast<int>(std::round(img_rows * scale));
resize_cols = static_cast<int>(std::round(img_cols * scale));
pad_rows = target_size - resize_rows;
pad_cols = target_size - resize_cols;
}
int main(int argc, char *argv[])
{
// --- Settings ---
if (argc < 3)
{
std::printf("Usage: %s model image [conf] [target size]\n", argv[0]);
return 0;
}
const std::string model_path = std::string(argv[1]);
float conf_thres = 0.25f;
int target_size = 640;
if (argc >= 4 && std::stof(argv[3]) > 0.0f)
conf_thres = std::stof(argv[3]);
if (argc >= 5 && std::stoi(argv[4]) > 0 &&
std::stoi(argv[4]) % 32 == 0 && std::stoi(argv[4]) > 32)
target_size = std::stoi(argv[4]);
std::cout << "Model: " << model_path << "\n";
std::cout << "Input: " << argv[2] << "\n";
std::cout << "Conf: " << conf_thres << "\n";
std::cout << "Target size: " << target_size << "\n";
// --- Init TRT ---
// load model data
std::ifstream engine_file(model_path, std::ios::binary);
if (!engine_file)
{
std::cerr << "Failed to open engine file\n";
return -1;
}
engine_file.seekg(0, engine_file.end);
std::streamsize engine_size = engine_file.tellg();
engine_file.seekg(0, engine_file.beg);
std::unique_ptr<char[]> engine_data{std::make_unique<char[]>(engine_size)};
if (!engine_file.read(engine_data.get(), engine_size))
{
std::cerr << "Failed to read engine file\n";
return -1;
}
engine_file.close();
// create runtime, engine, context, and stream
auto runtime{nvinfer1::createInferRuntime(logger)};
if (!runtime)
{
std::cerr << "Failed to create runtime\n";
return -1;
}
auto engine{runtime->deserializeCudaEngine(engine_data.get(), engine_size)};
if (!engine)
{
std::cerr << "Failed to deserialize engine\n";
return -1;
}
auto context{engine->createExecutionContext()};
if (!context)
{
std::cerr << "Failed to create contexts\n";
return -1;
}
std::unique_ptr<cudaStream_t> stream = std::make_unique<cudaStream_t>();
CUDA_CHECK(cudaStreamCreate(stream.get()));
// get model info
std::vector<std::pair<int, std::string>> in_tensor_info, out_tensor_info;
for (int i = 0; i < engine->getNbIOTensors(); ++i)
{
const char *tensor_name = engine->getIOTensorName(i);
nvinfer1::TensorIOMode io_mode = engine->getTensorIOMode(tensor_name);
if (io_mode == nvinfer1::TensorIOMode::kINPUT)
in_tensor_info.push_back({i, std::string(tensor_name)});
else if (io_mode == nvinfer1::TensorIOMode::kOUTPUT)
out_tensor_info.push_back({i, std::string(tensor_name)});
}
// create host memory
size_t max_in0_size_byte = CountElement(context->getTensorShape(in_tensor_info[0].second.c_str())) * sizeof(float);
size_t max_in1_size_byte = CountElement(context->getTensorShape(in_tensor_info[1].second.c_str())) * sizeof(int64_t);
size_t max_out0_size_byte = CountElement(context->getTensorShape(out_tensor_info[0].second.c_str())) * sizeof(int64_t);
size_t max_out1_size_byte = CountElement(context->getTensorShape(out_tensor_info[1].second.c_str())) * sizeof(float);
size_t max_out2_size_byte = CountElement(context->getTensorShape(out_tensor_info[2].second.c_str())) * sizeof(float);
std::vector<std::unique_ptr<unsigned char[]>> host_outs;
host_outs.resize(out_tensor_info.size());
host_outs[0] = std::make_unique<unsigned char[]>(max_out0_size_byte);
host_outs[1] = std::make_unique<unsigned char[]>(max_out1_size_byte);
host_outs[2] = std::make_unique<unsigned char[]>(max_out2_size_byte);
// create cuda memory
std::vector<void *> buffers{};
buffers.resize(engine->getNbIOTensors());
CUDA_CHECK(cudaMalloc(&buffers[in_tensor_info[0].first], max_in0_size_byte));
CUDA_CHECK(cudaMalloc(&buffers[in_tensor_info[1].first], max_in1_size_byte));
CUDA_CHECK(cudaMalloc(&buffers[out_tensor_info[0].first], max_out0_size_byte));
CUDA_CHECK(cudaMalloc(&buffers[out_tensor_info[1].first], max_out1_size_byte));
CUDA_CHECK(cudaMalloc(&buffers[out_tensor_info[2].first], max_out2_size_byte));
// set in/out tensor address
context->setInputTensorAddress(in_tensor_info[0].second.c_str(), buffers[in_tensor_info[0].first]);
context->setInputTensorAddress(in_tensor_info[1].second.c_str(), buffers[in_tensor_info[1].first]);
context->setOutputTensorAddress(out_tensor_info[0].second.c_str(), buffers[out_tensor_info[0].first]);
context->setOutputTensorAddress(out_tensor_info[1].second.c_str(), buffers[out_tensor_info[1].first]);
context->setOutputTensorAddress(out_tensor_info[2].second.c_str(), buffers[out_tensor_info[2].first]);
// --- Detect ---
cv::Mat image = cv::imread(argv[2]);
if (image.empty())
{
std::cout << "Failed to read image\n";
return -1;
}
// preprocessing
int img_rows = image.rows;
int img_cols = image.cols;
float scale;
int resize_rows, resize_cols, pad_rows, pad_cols;
GetLetterboxDimensions(
img_rows, img_cols, target_size,
resize_rows, resize_cols, pad_rows, pad_cols, scale
);
cv::Mat letterbox, blob;
cv::resize(image, letterbox, cv::Size(resize_cols, resize_rows), 0, 0, cv::INTER_AREA);
cv::copyMakeBorder(
letterbox, letterbox,
pad_rows / 2, pad_rows - pad_rows / 2,
pad_cols / 2, pad_cols - pad_cols / 2,
cv::BORDER_CONSTANT, cv::Scalar(114.0, 114.0, 114.0)
);
// no normalization
cv::dnn::blobFromImage(letterbox, blob, 1.0f / 255.0f, cv::Size(letterbox.cols, letterbox.rows), cv::Scalar(0, 0, 0), true, false, CV_32F);
nvinfer1::Dims trt_in0_dims{}, trt_in1_dims{};
trt_in0_dims.nbDims = 4;
trt_in0_dims.d[0] = 1;
trt_in0_dims.d[1] = 3;
trt_in0_dims.d[2] = letterbox.rows;
trt_in0_dims.d[3] = letterbox.cols;
context->setInputShape(in_tensor_info[0].second.c_str(), trt_in0_dims);
std::vector<int64_t> orig_size{static_cast<int64_t>(letterbox.rows), static_cast<int64_t>(letterbox.cols)};
trt_in1_dims.nbDims = 2;
trt_in1_dims.d[0] = 1;
trt_in1_dims.d[1] = 2;
context->setInputShape(in_tensor_info[1].second.c_str(), trt_in1_dims);
// execute
CUDA_CHECK(cudaMemcpyAsync(buffers[0], blob.data, max_in0_size_byte, cudaMemcpyHostToDevice, *stream));
CUDA_CHECK(cudaMemcpyAsync(buffers[1], orig_size.data(), max_in1_size_byte, cudaMemcpyHostToDevice, *stream));
context->enqueueV3(*stream);
CUDA_CHECK(cudaMemcpyAsync(host_outs[0].get(), buffers[2], max_out0_size_byte, cudaMemcpyDeviceToHost, *stream));
CUDA_CHECK(cudaMemcpyAsync(host_outs[1].get(), buffers[3], max_out1_size_byte, cudaMemcpyDeviceToHost, *stream));
CUDA_CHECK(cudaMemcpyAsync(host_outs[2].get(), buffers[4], max_out2_size_byte, cudaMemcpyDeviceToHost, *stream));
CUDA_CHECK(cudaStreamSynchronize(*stream));
const int64_t *labels_ptr = reinterpret_cast<const int64_t *>(host_outs[0].get());
const float *boxes_ptr = reinterpret_cast<const float *>(host_outs[1].get());
const float *scores_ptr = reinterpret_cast<const float *>(host_outs[2].get());
size_t num_box = 300;
size_t walk = 4;
float dw = pad_cols / 2, dh = pad_rows / 2;
std::vector<Object> objects;
for (size_t i = 0; i < num_box; ++i)
{
if (scores_ptr[i] < conf_thres)
continue;
float x0 = boxes_ptr[i * walk];
float y0 = boxes_ptr[i * walk + 1];
float x1 = boxes_ptr[i * walk + 2];
float y1 = boxes_ptr[i * walk + 3];
x0 = (x0 - dw) / scale;
y0 = (y0 - dh) / scale;
x1 = (x1 - dw) / scale;
y1 = (y1 - dh) / scale;
x0 = Clamp(x0, 0.0f, static_cast<float>(img_cols));
y0 = Clamp(y0, 0.0f, static_cast<float>(img_rows));
x1 = Clamp(x1, x0, static_cast<float>(img_cols));
y1 = Clamp(y1, y0, static_cast<float>(img_rows));
Object object;
object.rect.x = x0;
object.rect.y = y0;
object.rect.width = x1 - x0;
object.rect.height = y1 - y0;
object.prob = scores_ptr[i];
object.label = static_cast<int>(labels_ptr[i]);
objects.emplace_back(object);
}
// save results
if (DrawObjects(image, objects, labels, false))
cv::imwrite("./result.jpg", image);
else
std::cout << "Failed to draw objects\n";
// --- Release resources ---
for (const auto &buffer : buffers)
if (buffer)
CUDA_CHECK(cudaFree(buffer));
if (stream && *stream)
CUDA_CHECK(cudaStreamDestroy(*stream));
return 0;
}
|