File size: 14,338 Bytes
b26e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
/**

 * NOTE: Convert model with --fp16 may lead to incorrect results

 */
#include <iostream>
#include <string>
#include <vector>
#include <memory>
#include <fstream>

#include <opencv2/opencv.hpp>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <cuda_runtime_api.h>

#define CUDA_CHECK(call)                                                      \
    do                                                                        \
    {                                                                         \
        const cudaError_t error_code = call;                                  \
        if (error_code != cudaSuccess)                                        \
        {                                                                     \
            printf("CUDA_CHECK Error:\n");                                    \
            printf("    File:       %s\n", __FILE__);                         \
            printf("    Line:       %d\n", __LINE__);                         \
            printf("    Error code: %d\n", error_code);                       \
            printf("    Error text: %s\n", cudaGetErrorString(error_code));   \
            exit(1);                                                          \
        }                                                                     \
    } while (0)

struct Object
{
    cv::Rect_<float> rect;
    int label;
    float prob;
};

const std::vector<std::string> labels = {
    "Person", "Bicycle", "Car", "Motorcycle", "Airplane", "Bus", "Train",
    "Truck", "Boat", "Traffic light", "Fire hydrant", "Stop sign", "Parking meter",
    "Bench", "Bird", "Cat", "Dog", "Horse", "Sheep", "Cow", "Elephant", "Bear",
    "Zebra", "Giraffe", "Backpack", "Umbrella", "Handbag", "Tie", "Suitcase",
    "Frisbee", "Skis", "Snowboard", "Sports ball", "Kite", "Baseball bat",
    "Baseball glove", "Skateboard", "Surfboard", "Tennis racket", "Bottle",
    "Wine glass", "Cup", "Fork", "Knife", "Spoon", "Bowl", "Banana", "Apple",
    "Sandwich", "Orange", "Broccoli", "Carrot", "Hot dog", "Pizza", "Donut",
    "Cake", "Chair", "Couch", "Potted plant", "Bed", "Dining table", "Toilet",
    "Tv", "Laptop", "Mouse", "Remote", "Keyboard", "Cell phone", "Microwave",
    "Oven", "Toaster", "Sink", "Refrigerator", "Book", "Clock", "Vase", "Scissors",
    "Teddy bear", "Hair drier", "Toothbrush"
};

class Logger : public nvinfer1::ILogger
{
public:
    void log(Severity severity, const char *msg) noexcept override

    {
        if (severity <= nvinfer1::ILogger::Severity::kWARNING)
        {
            std::cerr << "[TensorRT] ";
            switch (severity)
            {
                case nvinfer1::ILogger::Severity::kINTERNAL_ERROR:  std::cerr << "INTERNAL_ERROR: ";    break;
                case nvinfer1::ILogger::Severity::kERROR:           std::cerr << "ERROR: ";             break;
                case nvinfer1::ILogger::Severity::kWARNING:         std::cerr << "WARNING: ";           break;
                case nvinfer1::ILogger::Severity::kINFO:            std::cerr << "INFO: ";              break;
                case nvinfer1::ILogger::Severity::kVERBOSE:         std::cerr << "VERBOSE: ";           break;
            }
            std::cerr << msg << "\n";
        }
    }
};

static Logger logger;

bool DrawObjects(cv::Mat &image, const std::vector<Object> &objects,

    const std::vector<std::string> &labels, bool isSilent)

{
    for (auto obj : objects)
    {
        if (obj.label >= static_cast<int>(labels.size()))
            return false;

        if (isSilent != true)
            std::printf("%s = %.2f%% at (%.1f, %.1f)  %.1f x %.1f\n", labels[obj.label].c_str(), obj.prob * 100.0f,
                obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);

        char text[256];
        snprintf(text, sizeof(text), "%s %.1f%%", labels[obj.label].c_str(), obj.prob * 100.0f);

        auto scalar = cv::Scalar(255, 255, 255);
        cv::rectangle(image, obj.rect, scalar, 2);

        int baseLine = 5;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.75, 1, &baseLine);

        int x = obj.rect.x - 1;
        int y = obj.rect.y - label_size.height - baseLine;
        y = std::max(0, y);
        if (x + label_size.width > image.cols)
            x = image.cols - label_size.width;

        cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
            scalar, -1);

        cv::putText(image, text, cv::Point(x, y + label_size.height + baseLine / 2),
            cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 0, 0), 2);
    }

    return true;
}

size_t CountElement(const nvinfer1::Dims &dims)

{
    int64_t total = 1;
    for (int32_t i = 0; i < dims.nbDims; ++i)
        total *= dims.d[i];
    return static_cast<size_t>(total);
}

template <typename T>
T Clamp(T val, T min, T max)

{
    return val > min ? (val < max ? val : max) : min;
}

void GetLetterboxDimensions(

    const int img_rows, const int img_cols,

    const int target_size,

    int &resize_rows, int &resize_cols, int &pad_rows, int &pad_cols, float &scale

)

{
    scale = static_cast<float>(target_size) / std::max(img_rows, img_cols);
    resize_rows = static_cast<int>(std::round(img_rows * scale));
    resize_cols = static_cast<int>(std::round(img_cols * scale));
    pad_rows = target_size - resize_rows;
    pad_cols = target_size - resize_cols;
}

int main(int argc, char *argv[])

{
    // --- Settings ---
    if (argc < 3)
    {
        std::printf("Usage: %s model image [conf] [target size]\n", argv[0]);
        return 0;
    }
    const std::string model_path = std::string(argv[1]);
    float conf_thres = 0.25f;
    int target_size = 640;
    if (argc >= 4 && std::stof(argv[3]) > 0.0f)
        conf_thres = std::stof(argv[3]);
    if (argc >= 5 && std::stoi(argv[4]) > 0 &&
        std::stoi(argv[4]) % 32 == 0 && std::stoi(argv[4]) > 32)
        target_size = std::stoi(argv[4]);

    std::cout << "Model: " << model_path << "\n";
    std::cout << "Input: " << argv[2] << "\n";
    std::cout << "Conf: " << conf_thres << "\n";
    std::cout << "Target size: " << target_size << "\n";

    // --- Init TRT ---
    // load model data
    std::ifstream engine_file(model_path, std::ios::binary);
    if (!engine_file)
    {
        std::cerr << "Failed to open engine file\n";
        return -1;
    }
    engine_file.seekg(0, engine_file.end);
    std::streamsize engine_size = engine_file.tellg();
    engine_file.seekg(0, engine_file.beg);
    std::unique_ptr<char[]> engine_data{std::make_unique<char[]>(engine_size)};
    if (!engine_file.read(engine_data.get(), engine_size))
    {
        std::cerr << "Failed to read engine file\n";
        return -1;
    }
    engine_file.close();

    // create runtime, engine, context, and stream
    auto runtime{nvinfer1::createInferRuntime(logger)};
    if (!runtime)
    {
        std::cerr << "Failed to create runtime\n";
        return -1;
    }
    auto engine{runtime->deserializeCudaEngine(engine_data.get(), engine_size)};
    if (!engine)
    {
        std::cerr << "Failed to deserialize engine\n";
        return -1;
    }
    auto context{engine->createExecutionContext()};
    if (!context)
    {
        std::cerr << "Failed to create contexts\n";
        return -1;
    }
    std::unique_ptr<cudaStream_t> stream = std::make_unique<cudaStream_t>();
    CUDA_CHECK(cudaStreamCreate(stream.get()));

    // get model info
    std::vector<std::pair<int, std::string>> in_tensor_info, out_tensor_info;
    for (int i = 0; i < engine->getNbIOTensors(); ++i)
    {
        const char *tensor_name = engine->getIOTensorName(i);
        nvinfer1::TensorIOMode io_mode = engine->getTensorIOMode(tensor_name);
        if (io_mode == nvinfer1::TensorIOMode::kINPUT)
            in_tensor_info.push_back({i, std::string(tensor_name)});
        else if (io_mode == nvinfer1::TensorIOMode::kOUTPUT)
            out_tensor_info.push_back({i, std::string(tensor_name)});
    }

    // create host memory
    size_t max_in0_size_byte = CountElement(context->getTensorShape(in_tensor_info[0].second.c_str())) * sizeof(float);
    size_t max_in1_size_byte = CountElement(context->getTensorShape(in_tensor_info[1].second.c_str())) * sizeof(int64_t);
    size_t max_out0_size_byte = CountElement(context->getTensorShape(out_tensor_info[0].second.c_str())) * sizeof(int64_t);
    size_t max_out1_size_byte = CountElement(context->getTensorShape(out_tensor_info[1].second.c_str())) * sizeof(float);
    size_t max_out2_size_byte = CountElement(context->getTensorShape(out_tensor_info[2].second.c_str())) * sizeof(float);
    std::vector<std::unique_ptr<unsigned char[]>> host_outs;
    host_outs.resize(out_tensor_info.size());
    host_outs[0] = std::make_unique<unsigned char[]>(max_out0_size_byte);
    host_outs[1] = std::make_unique<unsigned char[]>(max_out1_size_byte);
    host_outs[2] = std::make_unique<unsigned char[]>(max_out2_size_byte);
    // create cuda memory
    std::vector<void *> buffers{};
    buffers.resize(engine->getNbIOTensors());
    CUDA_CHECK(cudaMalloc(&buffers[in_tensor_info[0].first], max_in0_size_byte));
    CUDA_CHECK(cudaMalloc(&buffers[in_tensor_info[1].first], max_in1_size_byte));
    CUDA_CHECK(cudaMalloc(&buffers[out_tensor_info[0].first], max_out0_size_byte));
    CUDA_CHECK(cudaMalloc(&buffers[out_tensor_info[1].first], max_out1_size_byte));
    CUDA_CHECK(cudaMalloc(&buffers[out_tensor_info[2].first], max_out2_size_byte));

    // set in/out tensor address
    context->setInputTensorAddress(in_tensor_info[0].second.c_str(), buffers[in_tensor_info[0].first]);
    context->setInputTensorAddress(in_tensor_info[1].second.c_str(), buffers[in_tensor_info[1].first]);
    context->setOutputTensorAddress(out_tensor_info[0].second.c_str(), buffers[out_tensor_info[0].first]);
    context->setOutputTensorAddress(out_tensor_info[1].second.c_str(), buffers[out_tensor_info[1].first]);
    context->setOutputTensorAddress(out_tensor_info[2].second.c_str(), buffers[out_tensor_info[2].first]);

    // --- Detect ---
    cv::Mat image = cv::imread(argv[2]);
    if (image.empty())
    {
        std::cout << "Failed to read image\n";
        return -1;
    }

    // preprocessing
    int img_rows = image.rows;
    int img_cols = image.cols;
    float scale;
    int resize_rows, resize_cols, pad_rows, pad_cols;
    GetLetterboxDimensions(
        img_rows, img_cols, target_size,
        resize_rows, resize_cols, pad_rows, pad_cols, scale
    );
    cv::Mat letterbox, blob;
    cv::resize(image, letterbox, cv::Size(resize_cols, resize_rows), 0, 0, cv::INTER_AREA);
    cv::copyMakeBorder(
        letterbox, letterbox,
        pad_rows / 2, pad_rows - pad_rows / 2,
        pad_cols / 2, pad_cols - pad_cols / 2,
        cv::BORDER_CONSTANT, cv::Scalar(114.0, 114.0, 114.0)
    );
    // no normalization
    cv::dnn::blobFromImage(letterbox, blob, 1.0f / 255.0f, cv::Size(letterbox.cols, letterbox.rows), cv::Scalar(0, 0, 0), true, false, CV_32F);

    nvinfer1::Dims trt_in0_dims{}, trt_in1_dims{};
    trt_in0_dims.nbDims = 4;
    trt_in0_dims.d[0] = 1;
    trt_in0_dims.d[1] = 3;
    trt_in0_dims.d[2] = letterbox.rows;
    trt_in0_dims.d[3] = letterbox.cols;
    context->setInputShape(in_tensor_info[0].second.c_str(), trt_in0_dims);

    std::vector<int64_t> orig_size{static_cast<int64_t>(letterbox.rows), static_cast<int64_t>(letterbox.cols)};
    trt_in1_dims.nbDims = 2;
    trt_in1_dims.d[0] = 1;
    trt_in1_dims.d[1] = 2;
    context->setInputShape(in_tensor_info[1].second.c_str(), trt_in1_dims);

    // execute
    CUDA_CHECK(cudaMemcpyAsync(buffers[0], blob.data, max_in0_size_byte, cudaMemcpyHostToDevice, *stream));
    CUDA_CHECK(cudaMemcpyAsync(buffers[1], orig_size.data(), max_in1_size_byte, cudaMemcpyHostToDevice, *stream));

    context->enqueueV3(*stream);

    CUDA_CHECK(cudaMemcpyAsync(host_outs[0].get(), buffers[2], max_out0_size_byte, cudaMemcpyDeviceToHost, *stream));
    CUDA_CHECK(cudaMemcpyAsync(host_outs[1].get(), buffers[3], max_out1_size_byte, cudaMemcpyDeviceToHost, *stream));
    CUDA_CHECK(cudaMemcpyAsync(host_outs[2].get(), buffers[4], max_out2_size_byte, cudaMemcpyDeviceToHost, *stream));
    CUDA_CHECK(cudaStreamSynchronize(*stream));

    const int64_t *labels_ptr = reinterpret_cast<const int64_t *>(host_outs[0].get());
    const float *boxes_ptr = reinterpret_cast<const float *>(host_outs[1].get());
    const float *scores_ptr = reinterpret_cast<const float *>(host_outs[2].get());

    size_t num_box = 300;
    size_t walk = 4;
    float dw = pad_cols / 2, dh = pad_rows / 2;
    std::vector<Object> objects;
    for (size_t i = 0; i < num_box; ++i)
    {
        if (scores_ptr[i] < conf_thres)
            continue;

        float x0 = boxes_ptr[i * walk];
        float y0 = boxes_ptr[i * walk + 1];
        float x1 = boxes_ptr[i * walk + 2];
        float y1 = boxes_ptr[i * walk + 3];

        x0 = (x0 - dw) / scale;
        y0 = (y0 - dh) / scale;
        x1 = (x1 - dw) / scale;
        y1 = (y1 - dh) / scale;

        x0 = Clamp(x0, 0.0f, static_cast<float>(img_cols));
        y0 = Clamp(y0, 0.0f, static_cast<float>(img_rows));
        x1 = Clamp(x1, x0, static_cast<float>(img_cols));
        y1 = Clamp(y1, y0, static_cast<float>(img_rows));

        Object object;
        object.rect.x = x0;
        object.rect.y = y0;
        object.rect.width = x1 - x0;
        object.rect.height = y1 - y0;
        object.prob = scores_ptr[i];
        object.label = static_cast<int>(labels_ptr[i]);
        objects.emplace_back(object);
    }

    // save results
    if (DrawObjects(image, objects, labels, false))
        cv::imwrite("./result.jpg", image);
    else
        std::cout << "Failed to draw objects\n";

    // --- Release resources ---
    for (const auto &buffer : buffers)
        if (buffer)
            CUDA_CHECK(cudaFree(buffer));
    if (stream && *stream)
        CUDA_CHECK(cudaStreamDestroy(*stream));

    return 0;
}