File size: 5,166 Bytes
b26e93d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
"""

import cv2
import numpy as np
import onnxruntime as ort
import torch
import torchvision.transforms as T
from PIL import Image, ImageDraw


def resize_with_aspect_ratio(image, size, interpolation=Image.BILINEAR):
    """Resizes an image while maintaining aspect ratio and pads it."""
    original_width, original_height = image.size
    ratio = min(size / original_width, size / original_height)
    new_width = int(original_width * ratio)
    new_height = int(original_height * ratio)
    image = image.resize((new_width, new_height), interpolation)

    # Create a new image with the desired size and paste the resized image onto it
    new_image = Image.new("RGB", (size, size))
    new_image.paste(image, ((size - new_width) // 2, (size - new_height) // 2))
    return new_image, ratio, (size - new_width) // 2, (size - new_height) // 2


def draw(images, labels, boxes, scores, ratios, paddings, thrh=0.4):
    result_images = []
    for i, im in enumerate(images):
        draw = ImageDraw.Draw(im)
        scr = scores[i]
        lab = labels[i][scr > thrh]
        box = boxes[i][scr > thrh]
        scr = scr[scr > thrh]

        ratio = ratios[i]
        pad_w, pad_h = paddings[i]

        for lbl, bb in zip(lab, box):
            # Adjust bounding boxes according to the resizing and padding
            bb = [
                (bb[0] - pad_w) / ratio,
                (bb[1] - pad_h) / ratio,
                (bb[2] - pad_w) / ratio,
                (bb[3] - pad_h) / ratio,
            ]
            draw.rectangle(bb, outline="red")
            draw.text((bb[0], bb[1]), text=str(lbl), fill="blue")

        result_images.append(im)
    return result_images


def process_image(sess, im_pil):
    # Resize image while preserving aspect ratio
    resized_im_pil, ratio, pad_w, pad_h = resize_with_aspect_ratio(im_pil, 640)
    orig_size = torch.tensor([[resized_im_pil.size[1], resized_im_pil.size[0]]])

    transforms = T.Compose(
        [
            T.ToTensor(),
        ]
    )
    im_data = transforms(resized_im_pil).unsqueeze(0)

    output = sess.run(
        output_names=None,
        input_feed={"images": im_data.numpy(), "orig_target_sizes": orig_size.numpy()},
    )

    labels, boxes, scores = output

    result_images = draw([im_pil], labels, boxes, scores, [ratio], [(pad_w, pad_h)])
    result_images[0].save("onnx_result.jpg")
    print("Image processing complete. Result saved as 'result.jpg'.")


def process_video(sess, video_path):
    cap = cv2.VideoCapture(video_path)

    # Get video properties
    fps = cap.get(cv2.CAP_PROP_FPS)
    orig_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    orig_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    # Define the codec and create VideoWriter object
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    out = cv2.VideoWriter("onnx_result.mp4", fourcc, fps, (orig_w, orig_h))

    frame_count = 0
    print("Processing video frames...")
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        # Convert frame to PIL image
        frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

        # Resize frame while preserving aspect ratio
        resized_frame_pil, ratio, pad_w, pad_h = resize_with_aspect_ratio(frame_pil, 640)
        orig_size = torch.tensor([[resized_frame_pil.size[1], resized_frame_pil.size[0]]])

        transforms = T.Compose(
            [
                T.ToTensor(),
            ]
        )
        im_data = transforms(resized_frame_pil).unsqueeze(0)

        output = sess.run(
            output_names=None,
            input_feed={"images": im_data.numpy(), "orig_target_sizes": orig_size.numpy()},
        )

        labels, boxes, scores = output

        # Draw detections on the original frame
        result_images = draw([frame_pil], labels, boxes, scores, [ratio], [(pad_w, pad_h)])
        frame_with_detections = result_images[0]

        # Convert back to OpenCV image
        frame = cv2.cvtColor(np.array(frame_with_detections), cv2.COLOR_RGB2BGR)

        # Write the frame
        out.write(frame)
        frame_count += 1

        if frame_count % 10 == 0:
            print(f"Processed {frame_count} frames...")

    cap.release()
    out.release()
    print("Video processing complete. Result saved as 'result.mp4'.")


def main(args):
    """Main function."""
    # Load the ONNX model
    sess = ort.InferenceSession(args.onnx)
    print(f"Using device: {ort.get_device()}")

    input_path = args.input

    try:
        # Try to open the input as an image
        im_pil = Image.open(input_path).convert("RGB")
        process_image(sess, im_pil)
    except IOError:
        # Not an image, process as video
        process_video(sess, input_path)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--onnx", type=str, required=True, help="Path to the ONNX model file.")
    parser.add_argument(
        "--input", type=str, required=True, help="Path to the input image or video file."
    )
    args = parser.parse_args()
    main(args)