dangminh214's picture
Clean initial commit (no large files, no LFS pointers)
b26e93d
"""
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
"""
import argparse
import json
import os
def update_image_paths(images, new_prefix):
print("Updating image paths with new prefix...")
for img in images:
split = img["file_name"].split("/")[1:]
img["file_name"] = os.path.join(new_prefix, *split)
print("Image paths updated.")
return images
def create_split_annotations(original_annotations, split_image_ids, new_prefix, output_file):
print(f"Creating split annotations for {output_file}...")
new_images = [img for img in original_annotations["images"] if img["id"] in split_image_ids]
print(f"Number of images selected: {len(new_images)}")
if new_prefix is not None:
new_images = update_image_paths(new_images, new_prefix)
new_annotations = {
"images": new_images,
"annotations": [
ann for ann in original_annotations["annotations"] if ann["image_id"] in split_image_ids
],
"categories": original_annotations["categories"],
}
print(f'Number of annotations selected: {len(new_annotations["annotations"])}')
with open(output_file, "w") as f:
json.dump(new_annotations, f)
print(f"Annotations saved to {output_file}")
def parse_arguments():
parser = argparse.ArgumentParser(description="Split and update dataset annotations.")
parser.add_argument(
"--base_dir",
type=str,
required=True,
help="Base directory of the dataset, e.g., /data/Objects365/data",
)
parser.add_argument(
"--new_val_size",
type=int,
default=5000,
help="Number of images to include in the new validation set (default: 5000)",
)
parser.add_argument(
"--output_suffix",
type=str,
default="new",
help="Suffix to add to new annotation files (default: new)",
)
return parser.parse_args()
def main():
args = parse_arguments()
base_dir = args.base_dir
new_val_size = args.new_val_size
output_suffix = args.output_suffix
# Define paths based on the base directory
original_train_ann_file = os.path.join(base_dir, "train", "zhiyuan_objv2_train.json")
original_val_ann_file = os.path.join(base_dir, "val", "zhiyuan_objv2_val.json")
new_val_ann_file = os.path.join(base_dir, "val", f"{output_suffix}_zhiyuan_objv2_val.json")
new_train_ann_file = os.path.join(
base_dir, "train", f"{output_suffix}_zhiyuan_objv2_train.json"
)
# Check if original annotation files exist
if not os.path.isfile(original_train_ann_file):
print(f"Error: Training annotation file not found at {original_train_ann_file}")
return
if not os.path.isfile(original_val_ann_file):
print(f"Error: Validation annotation file not found at {original_val_ann_file}")
return
# Load the original training and validation annotations
print("Loading original training annotations...")
with open(original_train_ann_file, "r") as f:
train_annotations = json.load(f)
print("Training annotations loaded.")
print("Loading original validation annotations...")
with open(original_val_ann_file, "r") as f:
val_annotations = json.load(f)
print("Validation annotations loaded.")
# Extract image IDs from the original validation set
print("Extracting image IDs from the validation set...")
val_image_ids = [img["id"] for img in val_annotations["images"]]
print(f"Total validation images: {len(val_image_ids)}")
# Split image IDs for the new training and validation sets
print(
f"Splitting validation images into new validation set of size {new_val_size} and training set..."
)
new_val_image_ids = val_image_ids[:new_val_size]
new_train_image_ids = val_image_ids[new_val_size:]
print(f"New validation set size: {len(new_val_image_ids)}")
print(f"New training set size from validation images: {len(new_train_image_ids)}")
# Create new validation annotation file
print("Creating new validation annotations...")
create_split_annotations(val_annotations, new_val_image_ids, None, new_val_ann_file)
print("New validation annotations created.")
# Combine the remaining validation images and annotations with the original training data
print("Preparing new training images and annotations...")
new_train_images = [
img for img in val_annotations["images"] if img["id"] in new_train_image_ids
]
print(f"Number of images from validation to add to training: {len(new_train_images)}")
new_train_images = update_image_paths(new_train_images, "images_from_val")
new_train_annotations = [
ann for ann in val_annotations["annotations"] if ann["image_id"] in new_train_image_ids
]
print(f"Number of annotations from validation to add to training: {len(new_train_annotations)}")
# Add the original training images and annotations
print("Adding original training images and annotations...")
new_train_images.extend(train_annotations["images"])
new_train_annotations.extend(train_annotations["annotations"])
print(f"Total training images: {len(new_train_images)}")
print(f"Total training annotations: {len(new_train_annotations)}")
# Create a new training annotation dictionary
print("Creating new training annotations dictionary...")
new_train_annotations_dict = {
"images": new_train_images,
"annotations": new_train_annotations,
"categories": train_annotations["categories"],
}
print("New training annotations dictionary created.")
# Save the new training annotations
print("Saving new training annotations...")
with open(new_train_ann_file, "w") as f:
json.dump(new_train_annotations_dict, f)
print(f"New training annotations saved to {new_train_ann_file}")
print("Processing completed successfully.")
if __name__ == "__main__":
main()