dangminh214's picture
Clean initial commit (no large files, no LFS pointers)
b26e93d
"""
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
---------------------------------------------------------------------------------
Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
Copyright (c) 2023 lyuwenyu. All Rights Reserved.
"""
import os
import sys
import torch
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), ".."))
import argparse
from src.core import YAMLConfig, yaml_utils
from src.misc import dist_utils
from src.solver import TASKS
from pprint import pprint
debug = False
if debug:
def custom_repr(self):
return f"{{Tensor:{tuple(self.shape)}}} {original_repr(self)}"
original_repr = torch.Tensor.__repr__
torch.Tensor.__repr__ = custom_repr
def safe_get_rank():
if torch.distributed.is_available() and torch.distributed.is_initialized():
return torch.distributed.get_rank()
else:
return 0
def main(args) -> None:
"""main"""
dist_utils.setup_distributed(args.print_rank, args.print_method, seed=args.seed)
assert not all(
[args.tuning, args.resume]
), "Only support from_scrach or resume or tuning at one time"
update_dict = yaml_utils.parse_cli(args.update)
update_dict.update(
{
k: v
for k, v in args.__dict__.items()
if k
not in [
"update",
]
and v is not None
}
)
cfg = YAMLConfig(args.config, **update_dict)
if args.resume or args.tuning:
if "HGNetv2" in cfg.yaml_cfg:
cfg.yaml_cfg["HGNetv2"]["pretrained"] = False
if safe_get_rank() == 0:
print("cfg: ")
pprint(cfg.__dict__)
solver = TASKS[cfg.yaml_cfg["task"]](cfg)
if args.test_only:
solver.val()
else:
solver.fit()
dist_utils.cleanup()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# priority 0
parser.add_argument("-c", "--config", type=str, required=True)
parser.add_argument("-r", "--resume", type=str, help="resume from checkpoint")
parser.add_argument("-t", "--tuning", type=str, help="tuning from checkpoint")
parser.add_argument(
"-d",
"--device",
type=str,
help="device",
)
parser.add_argument("--seed", type=int, help="exp reproducibility")
parser.add_argument("--use-amp", action="store_true", help="auto mixed precision training")
parser.add_argument("--output-dir", type=str, help="output directoy")
parser.add_argument("--summary-dir", type=str, help="tensorboard summry")
parser.add_argument(
"--test-only",
action="store_true",
default=False,
)
# priority 1
parser.add_argument("-u", "--update", nargs="+", help="update yaml config")
# env
parser.add_argument("--print-method", type=str, default="builtin", help="print method")
parser.add_argument("--print-rank", type=int, default=0, help="print rank id")
parser.add_argument("--local-rank", type=int, help="local rank id")
args = parser.parse_args()
main(args)