File size: 6,456 Bytes
dcc8c59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from typing import List, Iterable
import torch
import torch.nn as nn

from matanyone.model.group_modules import *


class UpsampleBlock(nn.Module):
    def __init__(self, in_dim: int, out_dim: int, scale_factor: int = 2):
        super().__init__()
        self.out_conv = ResBlock(in_dim, out_dim)
        self.scale_factor = scale_factor

    def forward(self, in_g: torch.Tensor, skip_f: torch.Tensor) -> torch.Tensor:
        g = F.interpolate(in_g,
                      scale_factor=self.scale_factor,
                      mode='bilinear')
        g = self.out_conv(g)
        g = g + skip_f
        return g

class MaskUpsampleBlock(nn.Module):
    def __init__(self, in_dim: int, out_dim: int, scale_factor: int = 2):
        super().__init__()
        self.distributor = MainToGroupDistributor(method='add')
        self.out_conv = GroupResBlock(in_dim, out_dim)
        self.scale_factor = scale_factor

    def forward(self, in_g: torch.Tensor, skip_f: torch.Tensor) -> torch.Tensor:
        g = upsample_groups(in_g, ratio=self.scale_factor)
        g = self.distributor(skip_f, g)
        g = self.out_conv(g)
        return g
    

class DecoderFeatureProcessor(nn.Module):
    def __init__(self, decoder_dims: List[int], out_dims: List[int]):
        super().__init__()
        self.transforms = nn.ModuleList([
            nn.Conv2d(d_dim, p_dim, kernel_size=1) for d_dim, p_dim in zip(decoder_dims, out_dims)
        ])

    def forward(self, multi_scale_features: Iterable[torch.Tensor]) -> List[torch.Tensor]:
        outputs = [func(x) for x, func in zip(multi_scale_features, self.transforms)]
        return outputs


# @torch.jit.script
def _recurrent_update(h: torch.Tensor, values: torch.Tensor) -> torch.Tensor:
    # h: batch_size * num_objects * hidden_dim * h * w
    # values: batch_size * num_objects * (hidden_dim*3) * h * w
    dim = values.shape[2] // 3
    forget_gate = torch.sigmoid(values[:, :, :dim])
    update_gate = torch.sigmoid(values[:, :, dim:dim * 2])
    new_value = torch.tanh(values[:, :, dim * 2:])
    new_h = forget_gate * h * (1 - update_gate) + update_gate * new_value
    return new_h


class SensoryUpdater_fullscale(nn.Module):
    # Used in the decoder, multi-scale feature + GRU
    def __init__(self, g_dims: List[int], mid_dim: int, sensory_dim: int):
        super().__init__()
        self.g16_conv = GConv2d(g_dims[0], mid_dim, kernel_size=1)
        self.g8_conv = GConv2d(g_dims[1], mid_dim, kernel_size=1)
        self.g4_conv = GConv2d(g_dims[2], mid_dim, kernel_size=1)
        self.g2_conv = GConv2d(g_dims[3], mid_dim, kernel_size=1)
        self.g1_conv = GConv2d(g_dims[4], mid_dim, kernel_size=1)

        self.transform = GConv2d(mid_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1)

        nn.init.xavier_normal_(self.transform.weight)

    def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
        g = self.g16_conv(g[0]) + self.g8_conv(downsample_groups(g[1], ratio=1/2)) + \
            self.g4_conv(downsample_groups(g[2], ratio=1/4)) + \
            self.g2_conv(downsample_groups(g[3], ratio=1/8)) + \
            self.g1_conv(downsample_groups(g[4], ratio=1/16))

        with torch.cuda.amp.autocast(enabled=False):
            g = g.float()
            h = h.float()
            values = self.transform(torch.cat([g, h], dim=2))
            new_h = _recurrent_update(h, values)

        return new_h

class SensoryUpdater(nn.Module):
    # Used in the decoder, multi-scale feature + GRU
    def __init__(self, g_dims: List[int], mid_dim: int, sensory_dim: int):
        super().__init__()
        self.g16_conv = GConv2d(g_dims[0], mid_dim, kernel_size=1)
        self.g8_conv = GConv2d(g_dims[1], mid_dim, kernel_size=1)
        self.g4_conv = GConv2d(g_dims[2], mid_dim, kernel_size=1)

        self.transform = GConv2d(mid_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1)

        nn.init.xavier_normal_(self.transform.weight)

    def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
        g = self.g16_conv(g[0]) + self.g8_conv(downsample_groups(g[1], ratio=1/2)) + \
            self.g4_conv(downsample_groups(g[2], ratio=1/4))

        with torch.cuda.amp.autocast(enabled=False):
            g = g.float()
            h = h.float()
            values = self.transform(torch.cat([g, h], dim=2))
            new_h = _recurrent_update(h, values)

        return new_h


class SensoryDeepUpdater(nn.Module):
    def __init__(self, f_dim: int, sensory_dim: int):
        super().__init__()
        self.transform = GConv2d(f_dim + sensory_dim, sensory_dim * 3, kernel_size=3, padding=1)

        nn.init.xavier_normal_(self.transform.weight)

    def forward(self, g: torch.Tensor, h: torch.Tensor) -> torch.Tensor:
        with torch.cuda.amp.autocast(enabled=False):
            g = g.float()
            h = h.float()
            values = self.transform(torch.cat([g, h], dim=2))
            new_h = _recurrent_update(h, values)

        return new_h

  
class ResBlock(nn.Module):
    def __init__(self, in_dim: int, out_dim: int):
        super().__init__()

        if in_dim == out_dim:
            self.downsample = nn.Identity()
        else:
            self.downsample = nn.Conv2d(in_dim, out_dim, kernel_size=1)

        self.conv1 = nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(out_dim, out_dim, kernel_size=3, padding=1)

    def forward(self, g: torch.Tensor) -> torch.Tensor:
        out_g = self.conv1(F.relu(g))
        out_g = self.conv2(F.relu(out_g))

        g = self.downsample(g)

        return out_g + g

    def __init__(self, in_dim, reduction_dim, bins):
        super(PPM, self).__init__()
        self.features = []
        for bin in bins:
            self.features.append(nn.Sequential(
                nn.AdaptiveAvgPool2d(bin),
                nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False),
                nn.PReLU()
            ))
        self.features = nn.ModuleList(self.features)
        self.fuse = nn.Sequential(
                nn.Conv2d(in_dim+reduction_dim*4, in_dim, kernel_size=3, padding=1, bias=False),
                nn.PReLU())

    def forward(self, x):
        x_size = x.size()
        out = [x]
        for f in self.features:
            out.append(F.interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True))
        out_feat = self.fuse(torch.cat(out, 1))
        return out_feat