File size: 5,893 Bytes
a005c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from pathlib import Path
from leaderboard_ui.tab.submit_tab import submit_tab
from leaderboard_ui.tab.leaderboard_tab import leaderboard_tab
abs_path = Path(__file__).parent
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from utils.bench_meta import process_videos_in_directory
# Mock 데이터 생성
def create_mock_data():
    benchmarks = ['VQA-2023', 'ImageQuality-2024', 'VideoEnhance-2024']
    categories = ['Animation', 'Game', 'Movie', 'Sports', 'Vlog']
    
    data_list = []
    
    for benchmark in benchmarks:
        n_videos = np.random.randint(50, 100)
        for _ in range(n_videos):
            category = np.random.choice(categories)
            
            data_list.append({
                "video_name": f"video_{np.random.randint(1000, 9999)}.mp4",
                "resolution": np.random.choice(["1920x1080", "3840x2160", "1280x720"]),
                "video_duration": f"{np.random.randint(0, 10)}:{np.random.randint(0, 60)}",
                "category": category,
                "benchmark": benchmark,
                "duration_seconds": np.random.randint(30, 600),
                "total_frames": np.random.randint(1000, 10000),
                "file_format": ".mp4",
                "file_size_mb": round(np.random.uniform(10, 1000), 2),
                "aspect_ratio": 16/9,
                "fps": np.random.choice([24, 30, 60])
            })
    
    return pd.DataFrame(data_list)

# Mock 데이터 생성
# df = process_videos_in_directory("/home/piawsa6000/nas192/videos/huggingface_benchmarks_dataset/Leaderboard_bench")
df = pd.read_csv("sample.csv")
print("DataFrame shape:", df.shape)
print("DataFrame columns:", df.columns)
print("DataFrame head:\n", df.head())
def create_category_pie_chart(df, selected_benchmark, selected_categories=None):
    filtered_df = df[df['benchmark'] == selected_benchmark]
    
    if selected_categories:
        filtered_df = filtered_df[filtered_df['category'].isin(selected_categories)]
    
    category_counts = filtered_df['category'].value_counts()
    
    fig = px.pie(
        values=category_counts.values,
        names=category_counts.index,
        title=f'{selected_benchmark} - Video Distribution by Category',
        hole=0.3
    )
    fig.update_traces(textposition='inside', textinfo='percent+label')
    
    return fig
 
###TODO 스트링일경우 어케 처리

def create_bar_chart(df, selected_benchmark, selected_categories, selected_column):
    # Filter by benchmark and categories
    filtered_df = df[df['benchmark'] == selected_benchmark]
    if selected_categories:
        filtered_df = filtered_df[filtered_df['category'].isin(selected_categories)]
    
    # Create bar chart for selected column
    fig = px.bar(
        filtered_df,
        x=selected_column,
        y='video_name',
        color='category',  # Color by category
        title=f'{selected_benchmark} - Video {selected_column}',
        orientation='h',  # Horizontal bar chart
        color_discrete_sequence=px.colors.qualitative.Set3  # Color palette
    )
    
    # Adjust layout
    fig.update_layout(
        height=max(400, len(filtered_df) * 30),  # Adjust height based on data
        yaxis={'categoryorder': 'total ascending'},  # Sort by value
        margin=dict(l=200),  # Margin for long video names
        showlegend=True,  # Show legend
        legend=dict(
            orientation="h",  # Horizontal legend
            yanchor="bottom",
            y=1.02,  # Place legend above graph
            xanchor="right",
            x=1
        )
    )
    
    return fig

def submit_tab():
    with gr.Tab("🚀 Submit here! "):
        with gr.Row():
            gr.Markdown("# ✉️✨ Submit your Result here!")

def visual_tab():
    with gr.Tab("📊 Bench Info"):
        with gr.Row():
            benchmark_dropdown = gr.Dropdown(
                choices=sorted(df['benchmark'].unique().tolist()),
                value=sorted(df['benchmark'].unique().tolist())[0],
                label="Select Benchmark",
                interactive=True
            )
            
            category_multiselect = gr.CheckboxGroup(
                choices=sorted(df['category'].unique().tolist()),
                label="Select Categories (empty for all)",
                interactive=True
            )
        
        # Pie chart
        pie_plot_output = gr.Plot(label="pie")
        
        # Column selection dropdown
        column_options = [
            "video_duration", "duration_seconds", "total_frames", 
            "file_size_mb", "aspect_ratio", "fps", "file_format"
        ]
        
        column_dropdown = gr.Dropdown(
            choices=column_options,
            value=column_options[0],
            label="Select Data to Compare",
            interactive=True
        )
        
        # Bar chart
        bar_plot_output = gr.Plot(label="video")
        
        def update_plots(benchmark, categories, selected_column):
            pie_chart = create_category_pie_chart(df, benchmark, categories)
            bar_chart = create_bar_chart(df, benchmark, categories, selected_column)
            return pie_chart, bar_chart
        
        # Connect event handlers
        benchmark_dropdown.change(
            fn=update_plots,
            inputs=[benchmark_dropdown, category_multiselect, column_dropdown],
            outputs=[pie_plot_output, bar_plot_output]
        )
        category_multiselect.change(
            fn=update_plots,
            inputs=[benchmark_dropdown, category_multiselect, column_dropdown],
            outputs=[pie_plot_output, bar_plot_output]
        )
        column_dropdown.change(
            fn=update_plots,
            inputs=[benchmark_dropdown, category_multiselect, column_dropdown],
            outputs=[pie_plot_output, bar_plot_output]
        )