Spaces:
Sleeping
Sleeping
File size: 11,120 Bytes
a005c19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
from typing import List, Dict, Optional, Set, Tuple
import logging
import gspread
from dotenv import load_dotenv
from typing import Optional, List
from sheet_manager.sheet_crud.sheet_crud import SheetManager
load_dotenv()
class SheetChecker:
def __init__(self, sheet_manager):
"""Initialize SheetChecker with a sheet manager instance."""
self.sheet_manager = sheet_manager
self.bench_sheet_manager = None
self.logger = logging.getLogger(__name__)
self._init_bench_sheet()
def _init_bench_sheet(self):
"""Initialize sheet manager for the model sheet."""
self.bench_sheet_manager = type(self.sheet_manager)(
spreadsheet_url=self.sheet_manager.spreadsheet_url,
worksheet_name="model",
column_name="Model name"
)
def add_benchmark_column(self, column_name: str):
"""Add a new benchmark column to the sheet."""
try:
# Get current headers
headers = self.bench_sheet_manager.get_available_columns()
# If column already exists, return
if column_name in headers:
return
# Add new column header
new_col_index = len(headers) + 1
cell = gspread.utils.rowcol_to_a1(1, new_col_index)
# Update with 2D array format
self.bench_sheet_manager.sheet.update(cell, [[column_name]]) # 값을 2D 배열로 변경
self.logger.info(f"Added new benchmark column: {column_name}")
# Update headers in bench_sheet_manager
self.bench_sheet_manager._connect_to_sheet(validate_column=False)
except Exception as e:
self.logger.error(f"Error adding benchmark column {column_name}: {str(e)}")
raise
def validate_benchmark_columns(self, benchmark_columns: List[str]) -> Tuple[List[str], List[str]]:
"""
Validate benchmark columns and add missing ones.
Args:
benchmark_columns: List of benchmark column names to validate
Returns:
Tuple[List[str], List[str]]: (valid columns, invalid columns)
"""
available_columns = self.bench_sheet_manager.get_available_columns()
valid_columns = []
invalid_columns = []
for col in benchmark_columns:
if col in available_columns:
valid_columns.append(col)
else:
try:
self.add_benchmark_column(col)
valid_columns.append(col)
self.logger.info(f"Added new benchmark column: {col}")
except Exception as e:
invalid_columns.append(col)
self.logger.error(f"Failed to add benchmark column '{col}': {str(e)}")
return valid_columns, invalid_columns
def check_model_and_benchmarks(self, model_name: str, benchmark_columns: List[str]) -> Dict[str, List[str]]:
"""
Check model existence and which benchmarks need to be filled.
Args:
model_name: Name of the model to check
benchmark_columns: List of benchmark column names to check
Returns:
Dict with keys:
'status': 'model_not_found' or 'model_exists'
'empty_benchmarks': List of benchmark columns that need to be filled
'filled_benchmarks': List of benchmark columns that are already filled
'invalid_benchmarks': List of benchmark columns that don't exist
"""
result = {
'status': '',
'empty_benchmarks': [],
'filled_benchmarks': [],
'invalid_benchmarks': []
}
# First check if model exists
exists = self.check_model_exists(model_name)
if not exists:
result['status'] = 'model_not_found'
return result
result['status'] = 'model_exists'
# Validate benchmark columns
valid_columns, invalid_columns = self.validate_benchmark_columns(benchmark_columns)
result['invalid_benchmarks'] = invalid_columns
if not valid_columns:
return result
# Check which valid benchmarks are empty
self.bench_sheet_manager.change_column("Model name")
all_values = self.bench_sheet_manager.get_all_values()
row_index = all_values.index(model_name) + 2
for column in valid_columns:
try:
self.bench_sheet_manager.change_column(column)
value = self.bench_sheet_manager.sheet.cell(row_index, self.bench_sheet_manager.col_index).value
if not value or not value.strip():
result['empty_benchmarks'].append(column)
else:
result['filled_benchmarks'].append(column)
except Exception as e:
self.logger.error(f"Error checking column {column}: {str(e)}")
result['empty_benchmarks'].append(column)
return result
def update_model_info(self, model_name: str, model_info: Dict[str, str]):
"""Update basic model information columns."""
try:
for column_name, value in model_info.items():
self.bench_sheet_manager.change_column(column_name)
self.bench_sheet_manager.push(value)
self.logger.info(f"Successfully added new model: {model_name}")
except Exception as e:
self.logger.error(f"Error updating model info: {str(e)}")
raise
def update_benchmarks(self, model_name: str, benchmark_values: Dict[str, str]):
"""
Update benchmark values.
Args:
model_name: Name of the model
benchmark_values: Dictionary of benchmark column names and their values
"""
try:
self.bench_sheet_manager.change_column("Model name")
all_values = self.bench_sheet_manager.get_all_values()
row_index = all_values.index(model_name) + 2
for column, value in benchmark_values.items():
self.bench_sheet_manager.change_column(column)
self.bench_sheet_manager.sheet.update_cell(row_index, self.bench_sheet_manager.col_index, value)
self.logger.info(f"Updated benchmark {column} for model {model_name}")
except Exception as e:
self.logger.error(f"Error updating benchmarks: {str(e)}")
raise
def check_model_exists(self, model_name: str) -> bool:
"""Check if model exists in the sheet."""
try:
self.bench_sheet_manager.change_column("Model name")
values = self.bench_sheet_manager.get_all_values()
return model_name in values
except Exception as e:
self.logger.error(f"Error checking model existence: {str(e)}")
return False
def process_model_benchmarks(
model_name: str,
bench_checker: SheetChecker,
model_info_func,
benchmark_processor_func: callable,
benchmark_columns: List[str],
cfg_prompt: str
) -> None:
"""
Process model benchmarks according to the specified workflow.
Args:
model_name: Name of the model to process
bench_checker: SheetChecker instance
model_info_func: Function that returns model info (name, link, etc.)
benchmark_processor_func: Function that processes empty benchmarks and returns values
benchmark_columns: List of benchmark columns to check
"""
try:
# Check model and benchmarks
check_result = bench_checker.check_model_and_benchmarks(model_name, benchmark_columns)
# Handle invalid benchmark columns
if check_result['invalid_benchmarks']:
bench_checker.logger.warning(
f"Skipping invalid benchmark columns: {', '.join(check_result['invalid_benchmarks'])}"
)
# If model doesn't exist, add it
if check_result['status'] == 'model_not_found':
model_info = model_info_func(model_name)
bench_checker.update_model_info(model_name, model_info)
bench_checker.logger.info(f"Added new model: {model_name}")
# Recheck benchmarks after adding model
check_result = bench_checker.check_model_and_benchmarks(model_name, benchmark_columns)
# Log filled benchmarks
if check_result['filled_benchmarks']:
bench_checker.logger.info(
f"Skipping filled benchmark columns: {', '.join(check_result['filled_benchmarks'])}"
)
# Process empty benchmarks
if check_result['empty_benchmarks']:
bench_checker.logger.info(
f"Processing empty benchmark columns: {', '.join(check_result['empty_benchmarks'])}"
)
# Get benchmark values from processor function
benchmark_values = benchmark_processor_func(
model_name,
check_result['empty_benchmarks'],
cfg_prompt
)
# Update benchmarks
bench_checker.update_benchmarks(model_name, benchmark_values)
else:
bench_checker.logger.info("No empty benchmark columns to process")
except Exception as e:
bench_checker.logger.error(f"Error processing model {model_name}: {str(e)}")
raise
def get_model_info(model_name: str) -> Dict[str, str]:
return {
"Model name": model_name,
"Model link": f"https://huggingface.co/PIA-SPACE-LAB/{model_name}",
"Model": f'<a target="_blank" href="https://huggingface.co/PIA-SPACE-LAB/{model_name}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
}
def process_benchmarks(
model_name: str,
empty_benchmarks: List[str],
cfg_prompt: str
) -> Dict[str, str]:
"""
Measure benchmark scores for given model with specific configuration.
Args:
model_name: Name of the model to evaluate
empty_benchmarks: List of benchmarks to measure
cfg_prompt: Prompt configuration for evaluation
Returns:
Dict[str, str]: Dictionary mapping benchmark names to their scores
"""
result = {}
for benchmark in empty_benchmarks:
# 실제 벤치마크 측정 수행
# score = measure_benchmark(model_name, benchmark, cfg_prompt)
if benchmark == "COCO":
score = 0.5
elif benchmark == "ImageNet":
score = 15.0
result[benchmark] = str(score)
return result
# Example usage
if __name__ == "__main__":
sheet_manager = SheetManager()
bench_checker = SheetChecker(sheet_manager)
process_model_benchmarks(
"test-model",
bench_checker,
get_model_info,
process_benchmarks,
["COCO", "ImageNet"],
"cfg_prompt_value"
) |