File size: 14,956 Bytes
a005c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import pandas as pd
import numpy as np
from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score
from typing import Dict, List
import json
from utils.except_dir import cust_listdir

class MetricsEvaluator:
    def __init__(self, pred_dir: str, label_dir: str, save_dir: str):
        """
        Args:
            pred_dir: ์˜ˆ์ธก csv ํŒŒ์ผ๋“ค์ด ์žˆ๋Š” ๋””๋ ‰ํ† ๋ฆฌ ๊ฒฝ๋กœ
            label_dir: ์ •๋‹ต csv ํŒŒ์ผ๋“ค์ด ์žˆ๋Š” ๋””๋ ‰ํ† ๋ฆฌ ๊ฒฝ๋กœ 
            save_dir: ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•  ๋””๋ ‰ํ† ๋ฆฌ ๊ฒฝ๋กœ
        """
        self.pred_dir = pred_dir
        self.label_dir = label_dir
        self.save_dir = save_dir
        
    def evaluate(self) -> Dict:
        """์ „์ฒด ํ‰๊ฐ€ ์ˆ˜ํ–‰"""
        category_metrics = {}  # ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ํ‰๊ท  ์„ฑ๋Šฅ ์ €์žฅ
        all_metrics = {  # ๋ชจ๋“  ์นดํ…Œ๊ณ ๋ฆฌ ํ†ตํ•ฉ ๋ฉ”ํŠธ๋ฆญ
            'falldown': {'f1': [], 'accuracy': [], 'precision': [], 'recall': [], 'specificity': []},
            'violence': {'f1': [], 'accuracy': [], 'precision': [], 'recall': [], 'specificity': []},
            'fire': {'f1': [], 'accuracy': [], 'precision': [], 'recall': [], 'specificity': []}
        }

        # ๋ชจ๋“  ์นดํ…Œ๊ณ ๋ฆฌ์˜ metrics๋ฅผ ์ €์žฅํ•  DataFrame ๋ฆฌ์ŠคํŠธ
        all_categories_metrics = []

        for category in cust_listdir(self.pred_dir):
            if not os.path.isdir(os.path.join(self.pred_dir, category)):
                continue
                
            pred_category_path = os.path.join(self.pred_dir, category)
            label_category_path = os.path.join(self.label_dir, category)
            save_category_path = os.path.join(self.save_dir, category)
            os.makedirs(save_category_path, exist_ok=True)
            
            # ๊ฒฐ๊ณผ ์ €์žฅ์„ ์œ„ํ•œ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
            metrics_df = self._evaluate_category(category, pred_category_path, label_category_path)

            metrics_df['category'] = category

            metrics_df.to_csv(os.path.join(save_category_path, f"{category}_metrics.csv"), index=False)
            
            all_categories_metrics.append(metrics_df)

            # ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ํ‰๊ท  ์„ฑ๋Šฅ ์ €์žฅ
            category_metrics[category] = metrics_df.iloc[-1].to_dict()  # ๋งˆ์ง€๋ง‰ row(ํ‰๊ท )
            
            # ์ „์ฒด ํ‰๊ท ์„ ์œ„ํ•œ ๋ฉ”ํŠธ๋ฆญ ์ˆ˜์ง‘
            # for col in metrics_df.columns:
            #     if col != 'video_name':
            #         event_type, metric_type = col.split('_')
            #         all_metrics[event_type][metric_type].append(category_metrics[category][col])

            for col in metrics_df.columns:
                if col != 'video_name':
                    try:
                        # ์ฒซ ๋ฒˆ์งธ ์–ธ๋”์Šค์ฝ”์–ด๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์ด๋ฒคํŠธ ํƒ€์ž…๊ณผ ๋ฉ”ํŠธ๋ฆญ ํƒ€์ž… ๋ถ„๋ฆฌ
                        parts = col.split('_', 1)  # maxsplit=1๋กœ ์ฒซ ๋ฒˆ์งธ ์–ธ๋”์Šค์ฝ”์–ด์—์„œ๋งŒ ๋ถ„๋ฆฌ
                        if len(parts) == 2:
                            event_type, metric_type = parts
                            if event_type in all_metrics and metric_type in all_metrics[event_type]:
                                all_metrics[event_type][metric_type].append(category_metrics[category][col])
                    except Exception as e:
                        print(f"Warning: Could not process column {col}: {str(e)}")
                        continue
        
        # ๊ฐ DataFrame์—์„œ ๋งˆ์ง€๋ง‰ ํ–‰(average)์„ ์ œ๊ฑฐ
        all_categories_metrics_without_avg = [df.iloc[:-1] for df in all_categories_metrics]
        # ๋ชจ๋“  ์นดํ…Œ๊ณ ๋ฆฌ์˜ metrics๋ฅผ ํ•˜๋‚˜์˜ DataFrame์œผ๋กœ ํ•ฉ์น˜๊ธฐ
        combined_metrics_df = pd.concat(all_categories_metrics_without_avg, ignore_index=True)
        # ํ•ฉ์ณ์ง„ metrics๋ฅผ json ํŒŒ์ผ๊ณผ ๊ฐ™์€ ์œ„์น˜์— ์ €์žฅ
        combined_metrics_df.to_csv(os.path.join(self.save_dir, "all_categories_metrics.csv"), index=False)
        # ๊ฒฐ๊ณผ ์ถœ๋ ฅ
        # print("\nCategory-wise Average Metrics:")
        # for category, metrics in category_metrics.items():
        #     print(f"\n{category}:")
        #     for metric_name, value in metrics.items():
        #         if metric_name != "video_name":
        #             print(f"{metric_name}: {value:.3f}")
        
        print("\nCategory-wise Average Metrics:")
        for category, metrics in category_metrics.items():
            print(f"\n{category}:")
            for metric_name, value in metrics.items():
                if metric_name != "video_name":
                    try:
                        if isinstance(value, str):
                            print(f"{metric_name}: {value}")
                        elif metric_name in ['tp', 'tn', 'fp', 'fn']:
                            print(f"{metric_name}: {int(value)}")
                        else:
                            print(f"{metric_name}: {float(value):.3f}")
                    except (ValueError, TypeError):
                        print(f"{metric_name}: {value}")
        # ์ „์ฒด ํ‰๊ท  ๊ณ„์‚ฐ ๋ฐ ์ถœ๋ ฅ
        print("\n" + "="*50)
        print("Overall Average Metrics Across All Categories:")
        print("="*50)
        
        # for event_type in all_metrics:
        #     print(f"\n{event_type}:")
        #     for metric_type, values in all_metrics[event_type].items():
        #         avg_value = np.mean(values)
        #         print(f"{metric_type}: {avg_value:.3f}")
                
        for event_type in all_metrics:
            print(f"\n{event_type}:")
            for metric_type, values in all_metrics[event_type].items():
                avg_value = np.mean(values)
                if metric_type in ['tp', 'tn', 'fp', 'fn']:  # ์ •์ˆ˜ ๊ฐ’
                    print(f"{metric_type}: {int(avg_value)}")
                else:  # ์†Œ์ˆ˜์  ๊ฐ’
                    print(f"{metric_type}: {avg_value:.3f}")
        ##################################################################################################        
                # ์ตœ์ข… ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•  ๋”•์…”๋„ˆ๋ฆฌ
        final_results = {
            "category_metrics": {},
            "overall_metrics": {}
        }
        # ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ๋ฉ”ํŠธ๋ฆญ ์ €์žฅ

        for category, metrics in category_metrics.items():
            final_results["category_metrics"][category] = {}
            for metric_name, value in metrics.items():
                if metric_name != "video_name":
                    if isinstance(value, (int, float)):
                        final_results["category_metrics"][category][metric_name] = float(value)
        
        # ์ „์ฒด ํ‰๊ท  ๊ณ„์‚ฐ ๋ฐ ์ €์žฅ
        for event_type in all_metrics:
            # print(f"\n{event_type}:")
            final_results["overall_metrics"][event_type] = {}
            for metric_type, values in all_metrics[event_type].items():
                avg_value = float(np.mean(values))
                # print(f"{metric_type}: {avg_value:.3f}")
                final_results["overall_metrics"][event_type][metric_type] = avg_value
        
        # JSON ํŒŒ์ผ๋กœ ์ €์žฅ
        json_path = os.path.join(self.save_dir, "overall_metrics.json")
        with open(json_path, 'w', encoding='utf-8') as f:
            json.dump(final_results, f, indent=4)

        # return category_metrics
        
        # ๋ˆ„์  ๋ฉ”ํŠธ๋ฆญ ๊ณ„์‚ฐ
        accumulated_metrics = self.calculate_accumulated_metrics(combined_metrics_df)
        
        # JSON์— ๋ˆ„์  ๋ฉ”ํŠธ๋ฆญ ์ถ”๊ฐ€
        final_results["accumulated_metrics"] = accumulated_metrics
        
        # ๋ˆ„์  ๋ฉ”ํŠธ๋ฆญ๋งŒ ๋”ฐ๋กœ ์ €์žฅ
        accumulated_json_path = os.path.join(self.save_dir, "accumulated_metrics.json")
        with open(accumulated_json_path, 'w', encoding='utf-8') as f:
            json.dump(accumulated_metrics, f, indent=4)
            
        return accumulated_metrics

    def _evaluate_category(self, category: str, pred_path: str, label_path: str) -> pd.DataFrame:
        """์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ํ‰๊ฐ€ ์ˆ˜ํ–‰"""
        results = []
        metrics_columns = ['video_name']
        
        for pred_file in cust_listdir(pred_path):
            if not pred_file.endswith('.csv'):
                continue
                
            video_name = os.path.splitext(pred_file)[0]
            pred_df = pd.read_csv(os.path.join(pred_path, pred_file))
            
            # ํ•ด๋‹น ๋น„๋””์˜ค์˜ ์ •๋‹ต CSV ํŒŒ์ผ ๋กœ๋“œ
            label_file = f"{video_name}.csv"
            label_path_full = os.path.join(label_path, label_file)
            
            if not os.path.exists(label_path_full):
                print(f"Warning: Label file not found for {video_name}")
                continue
                
            label_df = pd.read_csv(label_path_full)
            
            # ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ๋ฉ”ํŠธ๋ฆญ ๊ณ„์‚ฐ
            video_metrics = {'video_name': video_name}
            categories = [col for col in pred_df.columns if col != 'frame']
            
            for cat in categories:
                # ์ •๋‹ต๊ฐ’๊ณผ ์˜ˆ์ธก๊ฐ’
                y_true = label_df[cat].values
                y_pred = pred_df[cat].values
                
                # ๋ฉ”ํŠธ๋ฆญ ๊ณ„์‚ฐ
                metrics = self._calculate_metrics(y_true, y_pred)
                
                # ๊ฒฐ๊ณผ ์ €์žฅ
                for metric_name, value in metrics.items():
                    col_name = f"{cat}_{metric_name}"
                    video_metrics[col_name] = value
                    if col_name not in metrics_columns:
                        metrics_columns.append(col_name)
            
            results.append(video_metrics)
        
        # ๊ฒฐ๊ณผ๋ฅผ ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„์œผ๋กœ ๋ณ€ํ™˜
        metrics_df = pd.DataFrame(results, columns=metrics_columns)
        
        # ํ‰๊ท  ๊ณ„์‚ฐํ•˜์—ฌ ์ถ”๊ฐ€
        avg_metrics = {'video_name': 'average'}
        for col in metrics_columns[1:]:  # video_name ์ œ์™ธ
            avg_metrics[col] = metrics_df[col].mean()
            
        metrics_df = pd.concat([metrics_df, pd.DataFrame([avg_metrics])], ignore_index=True)
        
        return metrics_df
    
    # def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray) -> Dict:
    #     """์„ฑ๋Šฅ ์ง€ํ‘œ ๊ณ„์‚ฐ"""
    #     tn = np.sum((y_true == 0) & (y_pred == 0))
    #     fp = np.sum((y_true == 0) & (y_pred == 1))
        
    #     metrics = {
    #         'f1': f1_score(y_true, y_pred, zero_division=0),
    #         'accuracy': accuracy_score(y_true, y_pred),
    #         'precision': precision_score(y_true, y_pred, zero_division=0),
    #         'recall': recall_score(y_true, y_pred, zero_division=0),
    #         'specificity': tn / (tn + fp) if (tn + fp) > 0 else 0
    #     }
        
    #     return metrics
    

    def calculate_accumulated_metrics(self, all_categories_metrics_df: pd.DataFrame) -> Dict:
        """๋ˆ„์ ๋œ ํ˜ผ๋™ํ–‰๋ ฌ๋กœ ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ์„ฑ๋Šฅ ์ง€ํ‘œ ๊ณ„์‚ฐ"""
        accumulated_results = {"micro_avg": {}}
        categories = ['falldown', 'violence', 'fire']
        
        for category in categories:
            # ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ์˜ ํ˜ผ๋™ํ–‰๋ ฌ ๊ฐ’๋“ค ๋ˆ„์ 
            tp = all_categories_metrics_df[f'{category}_tp'].sum()
            tn = all_categories_metrics_df[f'{category}_tn'].sum()
            fp = all_categories_metrics_df[f'{category}_fp'].sum()
            fn = all_categories_metrics_df[f'{category}_fn'].sum()
            
            # ๊ธฐ๋ณธ ๋ฉ”ํŠธ๋ฆญ ๊ณ„์‚ฐ
            metrics = {
                'tp': int(tp),
                'tn': int(tn),
                'fp': int(fp),
                'fn': int(fn),
                'accuracy': (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) > 0 else 0,
                'precision': tp / (tp + fp) if (tp + fp) > 0 else 0,
                'recall': tp / (tp + fn) if (tp + fn) > 0 else 0,
                'specificity': tn / (tn + fp) if (tn + fp) > 0 else 0,
                'f1': 2 * tp / (2 * tp + fp + fn) if (2 * tp + fp + fn) > 0 else 0,
            }
            
            # ์ถ”๊ฐ€ ๋ฉ”ํŠธ๋ฆญ ๊ณ„์‚ฐ
            tpr = metrics['recall']  # TPR = recall
            tnr = metrics['specificity']  # TNR = specificity
            
            # Balanced Accuracy
            metrics['balanced_accuracy'] = (tpr + tnr) / 2
            
            # G-Mean
            metrics['g_mean'] = np.sqrt(tpr * tnr) if (tpr * tnr) > 0 else 0
            
            # MCC (Matthews Correlation Coefficient)
            numerator = (tp * tn) - (fp * fn)
            denominator = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
            metrics['mcc'] = numerator / denominator if denominator > 0 else 0
            
            # NPV (Negative Predictive Value)
            metrics['npv'] = tn / (tn + fn) if (tn + fn) > 0 else 0
            
            # FAR (False Alarm Rate) = FPR = 1 - specificity
            metrics['far'] = 1 - metrics['specificity']
            
            accumulated_results[category] = metrics
        
        # ์ „์ฒด ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋ˆ„์  ๊ฐ’์œผ๋กœ ๊ณ„์‚ฐ
        total_tp = sum(accumulated_results[cat]['tp'] for cat in categories)
        total_tn = sum(accumulated_results[cat]['tn'] for cat in categories)
        total_fp = sum(accumulated_results[cat]['fp'] for cat in categories)
        total_fn = sum(accumulated_results[cat]['fn'] for cat in categories)
        
        # micro average ๊ณ„์‚ฐ (์ „์ฒด ๋ˆ„์  ๊ฐ’์œผ๋กœ ๊ณ„์‚ฐ)
        accumulated_results["micro_avg"] = {
            'tp': int(total_tp),
            'tn': int(total_tn),
            'fp': int(total_fp),
            'fn': int(total_fn),
            'accuracy': (total_tp + total_tn) / (total_tp + total_tn + total_fp + total_fn),
            'precision': total_tp / (total_tp + total_fp) if (total_tp + total_fp) > 0 else 0,
            'recall': total_tp / (total_tp + total_fn) if (total_tp + total_fn) > 0 else 0,
            'f1': 2 * total_tp / (2 * total_tp + total_fp + total_fn) if (2 * total_tp + total_fp + total_fn) > 0 else 0,
            # ... (๋‹ค๋ฅธ ๋ฉ”ํŠธ๋ฆญ๋“ค๋„ ๋™์ผํ•œ ๋ฐฉ์‹์œผ๋กœ ๊ณ„์‚ฐ)
        }
        
        return accumulated_results
    def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray) -> Dict:
        """์„ฑ๋Šฅ ์ง€ํ‘œ ๊ณ„์‚ฐ"""
        tn = np.sum((y_true == 0) & (y_pred == 0))
        fp = np.sum((y_true == 0) & (y_pred == 1))
        fn = np.sum((y_true == 1) & (y_pred == 0))
        tp = np.sum((y_true == 1) & (y_pred == 1))
        
        metrics = {
            'f1': f1_score(y_true, y_pred, zero_division=0),
            'accuracy': accuracy_score(y_true, y_pred),
            'precision': precision_score(y_true, y_pred, zero_division=0),
            'recall': recall_score(y_true, y_pred, zero_division=0),
            'specificity': tn / (tn + fp) if (tn + fp) > 0 else 0,
            'tp': int(tp),
            'tn': int(tn),
            'fp': int(fp),
            'fn': int(fn)
        }
        
        return metrics