Spaces:
Sleeping
Sleeping
File size: 14,956 Bytes
a005c19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import pandas as pd
import numpy as np
from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score
from typing import Dict, List
import json
from utils.except_dir import cust_listdir
class MetricsEvaluator:
def __init__(self, pred_dir: str, label_dir: str, save_dir: str):
"""
Args:
pred_dir: ์์ธก csv ํ์ผ๋ค์ด ์๋ ๋๋ ํ ๋ฆฌ ๊ฒฝ๋ก
label_dir: ์ ๋ต csv ํ์ผ๋ค์ด ์๋ ๋๋ ํ ๋ฆฌ ๊ฒฝ๋ก
save_dir: ๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ ๋๋ ํ ๋ฆฌ ๊ฒฝ๋ก
"""
self.pred_dir = pred_dir
self.label_dir = label_dir
self.save_dir = save_dir
def evaluate(self) -> Dict:
"""์ ์ฒด ํ๊ฐ ์ํ"""
category_metrics = {} # ์นดํ
๊ณ ๋ฆฌ๋ณ ํ๊ท ์ฑ๋ฅ ์ ์ฅ
all_metrics = { # ๋ชจ๋ ์นดํ
๊ณ ๋ฆฌ ํตํฉ ๋ฉํธ๋ฆญ
'falldown': {'f1': [], 'accuracy': [], 'precision': [], 'recall': [], 'specificity': []},
'violence': {'f1': [], 'accuracy': [], 'precision': [], 'recall': [], 'specificity': []},
'fire': {'f1': [], 'accuracy': [], 'precision': [], 'recall': [], 'specificity': []}
}
# ๋ชจ๋ ์นดํ
๊ณ ๋ฆฌ์ metrics๋ฅผ ์ ์ฅํ DataFrame ๋ฆฌ์คํธ
all_categories_metrics = []
for category in cust_listdir(self.pred_dir):
if not os.path.isdir(os.path.join(self.pred_dir, category)):
continue
pred_category_path = os.path.join(self.pred_dir, category)
label_category_path = os.path.join(self.label_dir, category)
save_category_path = os.path.join(self.save_dir, category)
os.makedirs(save_category_path, exist_ok=True)
# ๊ฒฐ๊ณผ ์ ์ฅ์ ์ํ ๋ฐ์ดํฐํ๋ ์ ์์ฑ
metrics_df = self._evaluate_category(category, pred_category_path, label_category_path)
metrics_df['category'] = category
metrics_df.to_csv(os.path.join(save_category_path, f"{category}_metrics.csv"), index=False)
all_categories_metrics.append(metrics_df)
# ์นดํ
๊ณ ๋ฆฌ๋ณ ํ๊ท ์ฑ๋ฅ ์ ์ฅ
category_metrics[category] = metrics_df.iloc[-1].to_dict() # ๋ง์ง๋ง row(ํ๊ท )
# ์ ์ฒด ํ๊ท ์ ์ํ ๋ฉํธ๋ฆญ ์์ง
# for col in metrics_df.columns:
# if col != 'video_name':
# event_type, metric_type = col.split('_')
# all_metrics[event_type][metric_type].append(category_metrics[category][col])
for col in metrics_df.columns:
if col != 'video_name':
try:
# ์ฒซ ๋ฒ์งธ ์ธ๋์ค์ฝ์ด๋ฅผ ๊ธฐ์ค์ผ๋ก ์ด๋ฒคํธ ํ์
๊ณผ ๋ฉํธ๋ฆญ ํ์
๋ถ๋ฆฌ
parts = col.split('_', 1) # maxsplit=1๋ก ์ฒซ ๋ฒ์งธ ์ธ๋์ค์ฝ์ด์์๋ง ๋ถ๋ฆฌ
if len(parts) == 2:
event_type, metric_type = parts
if event_type in all_metrics and metric_type in all_metrics[event_type]:
all_metrics[event_type][metric_type].append(category_metrics[category][col])
except Exception as e:
print(f"Warning: Could not process column {col}: {str(e)}")
continue
# ๊ฐ DataFrame์์ ๋ง์ง๋ง ํ(average)์ ์ ๊ฑฐ
all_categories_metrics_without_avg = [df.iloc[:-1] for df in all_categories_metrics]
# ๋ชจ๋ ์นดํ
๊ณ ๋ฆฌ์ metrics๋ฅผ ํ๋์ DataFrame์ผ๋ก ํฉ์น๊ธฐ
combined_metrics_df = pd.concat(all_categories_metrics_without_avg, ignore_index=True)
# ํฉ์ณ์ง metrics๋ฅผ json ํ์ผ๊ณผ ๊ฐ์ ์์น์ ์ ์ฅ
combined_metrics_df.to_csv(os.path.join(self.save_dir, "all_categories_metrics.csv"), index=False)
# ๊ฒฐ๊ณผ ์ถ๋ ฅ
# print("\nCategory-wise Average Metrics:")
# for category, metrics in category_metrics.items():
# print(f"\n{category}:")
# for metric_name, value in metrics.items():
# if metric_name != "video_name":
# print(f"{metric_name}: {value:.3f}")
print("\nCategory-wise Average Metrics:")
for category, metrics in category_metrics.items():
print(f"\n{category}:")
for metric_name, value in metrics.items():
if metric_name != "video_name":
try:
if isinstance(value, str):
print(f"{metric_name}: {value}")
elif metric_name in ['tp', 'tn', 'fp', 'fn']:
print(f"{metric_name}: {int(value)}")
else:
print(f"{metric_name}: {float(value):.3f}")
except (ValueError, TypeError):
print(f"{metric_name}: {value}")
# ์ ์ฒด ํ๊ท ๊ณ์ฐ ๋ฐ ์ถ๋ ฅ
print("\n" + "="*50)
print("Overall Average Metrics Across All Categories:")
print("="*50)
# for event_type in all_metrics:
# print(f"\n{event_type}:")
# for metric_type, values in all_metrics[event_type].items():
# avg_value = np.mean(values)
# print(f"{metric_type}: {avg_value:.3f}")
for event_type in all_metrics:
print(f"\n{event_type}:")
for metric_type, values in all_metrics[event_type].items():
avg_value = np.mean(values)
if metric_type in ['tp', 'tn', 'fp', 'fn']: # ์ ์ ๊ฐ
print(f"{metric_type}: {int(avg_value)}")
else: # ์์์ ๊ฐ
print(f"{metric_type}: {avg_value:.3f}")
##################################################################################################
# ์ต์ข
๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ ๋์
๋๋ฆฌ
final_results = {
"category_metrics": {},
"overall_metrics": {}
}
# ์นดํ
๊ณ ๋ฆฌ๋ณ ๋ฉํธ๋ฆญ ์ ์ฅ
for category, metrics in category_metrics.items():
final_results["category_metrics"][category] = {}
for metric_name, value in metrics.items():
if metric_name != "video_name":
if isinstance(value, (int, float)):
final_results["category_metrics"][category][metric_name] = float(value)
# ์ ์ฒด ํ๊ท ๊ณ์ฐ ๋ฐ ์ ์ฅ
for event_type in all_metrics:
# print(f"\n{event_type}:")
final_results["overall_metrics"][event_type] = {}
for metric_type, values in all_metrics[event_type].items():
avg_value = float(np.mean(values))
# print(f"{metric_type}: {avg_value:.3f}")
final_results["overall_metrics"][event_type][metric_type] = avg_value
# JSON ํ์ผ๋ก ์ ์ฅ
json_path = os.path.join(self.save_dir, "overall_metrics.json")
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(final_results, f, indent=4)
# return category_metrics
# ๋์ ๋ฉํธ๋ฆญ ๊ณ์ฐ
accumulated_metrics = self.calculate_accumulated_metrics(combined_metrics_df)
# JSON์ ๋์ ๋ฉํธ๋ฆญ ์ถ๊ฐ
final_results["accumulated_metrics"] = accumulated_metrics
# ๋์ ๋ฉํธ๋ฆญ๋ง ๋ฐ๋ก ์ ์ฅ
accumulated_json_path = os.path.join(self.save_dir, "accumulated_metrics.json")
with open(accumulated_json_path, 'w', encoding='utf-8') as f:
json.dump(accumulated_metrics, f, indent=4)
return accumulated_metrics
def _evaluate_category(self, category: str, pred_path: str, label_path: str) -> pd.DataFrame:
"""์นดํ
๊ณ ๋ฆฌ๋ณ ํ๊ฐ ์ํ"""
results = []
metrics_columns = ['video_name']
for pred_file in cust_listdir(pred_path):
if not pred_file.endswith('.csv'):
continue
video_name = os.path.splitext(pred_file)[0]
pred_df = pd.read_csv(os.path.join(pred_path, pred_file))
# ํด๋น ๋น๋์ค์ ์ ๋ต CSV ํ์ผ ๋ก๋
label_file = f"{video_name}.csv"
label_path_full = os.path.join(label_path, label_file)
if not os.path.exists(label_path_full):
print(f"Warning: Label file not found for {video_name}")
continue
label_df = pd.read_csv(label_path_full)
# ๊ฐ ์นดํ
๊ณ ๋ฆฌ๋ณ ๋ฉํธ๋ฆญ ๊ณ์ฐ
video_metrics = {'video_name': video_name}
categories = [col for col in pred_df.columns if col != 'frame']
for cat in categories:
# ์ ๋ต๊ฐ๊ณผ ์์ธก๊ฐ
y_true = label_df[cat].values
y_pred = pred_df[cat].values
# ๋ฉํธ๋ฆญ ๊ณ์ฐ
metrics = self._calculate_metrics(y_true, y_pred)
# ๊ฒฐ๊ณผ ์ ์ฅ
for metric_name, value in metrics.items():
col_name = f"{cat}_{metric_name}"
video_metrics[col_name] = value
if col_name not in metrics_columns:
metrics_columns.append(col_name)
results.append(video_metrics)
# ๊ฒฐ๊ณผ๋ฅผ ๋ฐ์ดํฐํ๋ ์์ผ๋ก ๋ณํ
metrics_df = pd.DataFrame(results, columns=metrics_columns)
# ํ๊ท ๊ณ์ฐํ์ฌ ์ถ๊ฐ
avg_metrics = {'video_name': 'average'}
for col in metrics_columns[1:]: # video_name ์ ์ธ
avg_metrics[col] = metrics_df[col].mean()
metrics_df = pd.concat([metrics_df, pd.DataFrame([avg_metrics])], ignore_index=True)
return metrics_df
# def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray) -> Dict:
# """์ฑ๋ฅ ์งํ ๊ณ์ฐ"""
# tn = np.sum((y_true == 0) & (y_pred == 0))
# fp = np.sum((y_true == 0) & (y_pred == 1))
# metrics = {
# 'f1': f1_score(y_true, y_pred, zero_division=0),
# 'accuracy': accuracy_score(y_true, y_pred),
# 'precision': precision_score(y_true, y_pred, zero_division=0),
# 'recall': recall_score(y_true, y_pred, zero_division=0),
# 'specificity': tn / (tn + fp) if (tn + fp) > 0 else 0
# }
# return metrics
def calculate_accumulated_metrics(self, all_categories_metrics_df: pd.DataFrame) -> Dict:
"""๋์ ๋ ํผ๋ํ๋ ฌ๋ก ๊ฐ ์นดํ
๊ณ ๋ฆฌ๋ณ ์ฑ๋ฅ ์งํ ๊ณ์ฐ"""
accumulated_results = {"micro_avg": {}}
categories = ['falldown', 'violence', 'fire']
for category in categories:
# ํด๋น ์นดํ
๊ณ ๋ฆฌ์ ํผ๋ํ๋ ฌ ๊ฐ๋ค ๋์
tp = all_categories_metrics_df[f'{category}_tp'].sum()
tn = all_categories_metrics_df[f'{category}_tn'].sum()
fp = all_categories_metrics_df[f'{category}_fp'].sum()
fn = all_categories_metrics_df[f'{category}_fn'].sum()
# ๊ธฐ๋ณธ ๋ฉํธ๋ฆญ ๊ณ์ฐ
metrics = {
'tp': int(tp),
'tn': int(tn),
'fp': int(fp),
'fn': int(fn),
'accuracy': (tp + tn) / (tp + tn + fp + fn) if (tp + tn + fp + fn) > 0 else 0,
'precision': tp / (tp + fp) if (tp + fp) > 0 else 0,
'recall': tp / (tp + fn) if (tp + fn) > 0 else 0,
'specificity': tn / (tn + fp) if (tn + fp) > 0 else 0,
'f1': 2 * tp / (2 * tp + fp + fn) if (2 * tp + fp + fn) > 0 else 0,
}
# ์ถ๊ฐ ๋ฉํธ๋ฆญ ๊ณ์ฐ
tpr = metrics['recall'] # TPR = recall
tnr = metrics['specificity'] # TNR = specificity
# Balanced Accuracy
metrics['balanced_accuracy'] = (tpr + tnr) / 2
# G-Mean
metrics['g_mean'] = np.sqrt(tpr * tnr) if (tpr * tnr) > 0 else 0
# MCC (Matthews Correlation Coefficient)
numerator = (tp * tn) - (fp * fn)
denominator = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
metrics['mcc'] = numerator / denominator if denominator > 0 else 0
# NPV (Negative Predictive Value)
metrics['npv'] = tn / (tn + fn) if (tn + fn) > 0 else 0
# FAR (False Alarm Rate) = FPR = 1 - specificity
metrics['far'] = 1 - metrics['specificity']
accumulated_results[category] = metrics
# ์ ์ฒด ์นดํ
๊ณ ๋ฆฌ์ ๋์ ๊ฐ์ผ๋ก ๊ณ์ฐ
total_tp = sum(accumulated_results[cat]['tp'] for cat in categories)
total_tn = sum(accumulated_results[cat]['tn'] for cat in categories)
total_fp = sum(accumulated_results[cat]['fp'] for cat in categories)
total_fn = sum(accumulated_results[cat]['fn'] for cat in categories)
# micro average ๊ณ์ฐ (์ ์ฒด ๋์ ๊ฐ์ผ๋ก ๊ณ์ฐ)
accumulated_results["micro_avg"] = {
'tp': int(total_tp),
'tn': int(total_tn),
'fp': int(total_fp),
'fn': int(total_fn),
'accuracy': (total_tp + total_tn) / (total_tp + total_tn + total_fp + total_fn),
'precision': total_tp / (total_tp + total_fp) if (total_tp + total_fp) > 0 else 0,
'recall': total_tp / (total_tp + total_fn) if (total_tp + total_fn) > 0 else 0,
'f1': 2 * total_tp / (2 * total_tp + total_fp + total_fn) if (2 * total_tp + total_fp + total_fn) > 0 else 0,
# ... (๋ค๋ฅธ ๋ฉํธ๋ฆญ๋ค๋ ๋์ผํ ๋ฐฉ์์ผ๋ก ๊ณ์ฐ)
}
return accumulated_results
def _calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray) -> Dict:
"""์ฑ๋ฅ ์งํ ๊ณ์ฐ"""
tn = np.sum((y_true == 0) & (y_pred == 0))
fp = np.sum((y_true == 0) & (y_pred == 1))
fn = np.sum((y_true == 1) & (y_pred == 0))
tp = np.sum((y_true == 1) & (y_pred == 1))
metrics = {
'f1': f1_score(y_true, y_pred, zero_division=0),
'accuracy': accuracy_score(y_true, y_pred),
'precision': precision_score(y_true, y_pred, zero_division=0),
'recall': recall_score(y_true, y_pred, zero_division=0),
'specificity': tn / (tn + fp) if (tn + fp) > 0 else 0,
'tp': int(tp),
'tn': int(tn),
'fp': int(fp),
'fn': int(fn)
}
return metrics |