File size: 14,890 Bytes
bb3e610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import sys
import torch
from torchvision.transforms.functional import normalize, to_pil_image
from torchvision.transforms import ToTensor, Normalize
import matplotlib.pyplot as plt
import json
from models import get_model
from utils import resize_density_map, sliding_window_predict
from PIL import Image
import numpy as np
from scipy.ndimage import gaussian_filter
from sklearn.cluster import KMeans
import datetime
from typing import Optional
from typing import Union

project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(project_root)
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class ClipEBC:
    """
    CLIP-EBC (Efficient Boundary Counting) ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ํด๋ž˜์Šค์ž…๋‹ˆ๋‹ค.
    
    CLIP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋ฉฐ, ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์˜ˆ์ธก ๊ธฐ๋Šฅ์„ ํฌํ•จํ•œ
    ๋‹ค์–‘ํ•œ ์„ค์ • ์˜ต์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
    
    Attributes:
        truncation (int): ์ž˜๋ผ๋‚ด๊ธฐ ๋งค๊ฐœ๋ณ€์ˆ˜. ๊ธฐ๋ณธ๊ฐ’ 4.
        reduction (int): ์ถ•์†Œ ๋น„์œจ. ๊ธฐ๋ณธ๊ฐ’ 8.
        granularity (str): ์„ธ๋ถ„ํ™” ์ˆ˜์ค€. ๊ธฐ๋ณธ๊ฐ’ "fine".
        anchor_points (str): ์•ต์ปค ํฌ์ธํŠธ ๋ฐฉ๋ฒ•. ๊ธฐ๋ณธ๊ฐ’ "average".
        model_name (str): CLIP ๋ชจ๋ธ ์ด๋ฆ„. ๊ธฐ๋ณธ๊ฐ’ "clip_vit_b_16".
        input_size (int): ์ž…๋ ฅ ์ด๋ฏธ์ง€ ํฌ๊ธฐ. ๊ธฐ๋ณธ๊ฐ’ 224.
        window_size (int): ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ํฌ๊ธฐ. ๊ธฐ๋ณธ๊ฐ’ 224.
        stride (int): ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์ด๋™ ๊ฐ„๊ฒฉ. ๊ธฐ๋ณธ๊ฐ’ 224.
        prompt_type (str): ํ”„๋กฌํ”„ํŠธ ์œ ํ˜•. ๊ธฐ๋ณธ๊ฐ’ "word".
        dataset_name (str): ๋ฐ์ดํ„ฐ์…‹ ์ด๋ฆ„. ๊ธฐ๋ณธ๊ฐ’ "qnrf".
        num_vpt (int): ๋น„์ฃผ์–ผ ํ”„๋กฌํ”„ํŠธ ํ† ํฐ ์ˆ˜. ๊ธฐ๋ณธ๊ฐ’ 32.
        vpt_drop (float): ๋น„์ฃผ์–ผ ํ”„๋กฌํ”„ํŠธ ํ† ํฐ ๋“œ๋กญ์•„์›ƒ ๋น„์œจ. ๊ธฐ๋ณธ๊ฐ’ 0.0.
        deep_vpt (bool): ๊นŠ์€ ๋น„์ฃผ์–ผ ํ”„๋กฌํ”„ํŠธ ํ† ํฐ ์‚ฌ์šฉ ์—ฌ๋ถ€. ๊ธฐ๋ณธ๊ฐ’ True.
        mean (tuple): ์ •๊ทœํ™”๋ฅผ ์œ„ํ•œ ํ‰๊ท ๊ฐ’. ๊ธฐ๋ณธ๊ฐ’ (0.485, 0.456, 0.406).
        std (tuple): ์ •๊ทœํ™”๋ฅผ ์œ„ํ•œ ํ‘œ์ค€ํŽธ์ฐจ๊ฐ’. ๊ธฐ๋ณธ๊ฐ’ (0.229, 0.224, 0.225).
    """
    
    def __init__(self,
                 truncation=4,
                 reduction=8,
                 granularity="fine",
                 anchor_points="average",
                 model_name="clip_vit_b_16",
                 input_size=224,
                 window_size=224,
                 stride=224,
                 prompt_type="word",
                 dataset_name="qnrf",
                 num_vpt=32,
                 vpt_drop=0.,
                 deep_vpt=True,
                 mean=(0.485, 0.456, 0.406),
                 std=(0.229, 0.224, 0.225),
                 config_dir="configs"):
        """CLIPEBC ํด๋ž˜์Šค๋ฅผ ์„ค์ • ๋งค๊ฐœ๋ณ€์ˆ˜์™€ ํ•จ๊ป˜ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค."""
        self.truncation = truncation
        self.reduction = reduction
        self.granularity = granularity
        self.anchor_points_type = anchor_points  # ์›๋ž˜ ์ž…๋ ฅ๊ฐ’ ์ €์žฅ
        self.model_name = model_name
        self.input_size = input_size
        self.window_size = window_size
        self.stride = stride
        self.prompt_type = prompt_type
        self.dataset_name = dataset_name
        self.num_vpt = num_vpt
        self.vpt_drop = vpt_drop
        self.deep_vpt = deep_vpt
        self.mean = mean
        self.std = std
        self.config_dir = config_dir
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        self.bins = None
        self.anchor_points = None
        self.model = None
        
        # ์ดˆ๊ธฐ ์„ค์ • ๋กœ๋“œ ๋ฐ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
        self._load_config()
        self._initialize_model()
        
    def _load_config(self):
        """์„ค์ • ํŒŒ์ผ์„ ๋กœ๋“œํ•˜๊ณ  bins์™€ anchor_points๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค."""
        config_path = os.path.join(self.config_dir, f"reduction_{self.reduction}.json")
        with open(config_path, "r") as f:
            config = json.load(f)[str(self.truncation)][self.dataset_name]
        
        self.bins = config["bins"][self.granularity]
        self.bins = [(float(b[0]), float(b[1])) for b in self.bins]
        
        if self.anchor_points_type == "average":
            self.anchor_points = config["anchor_points"][self.granularity]["average"]
        else:
            self.anchor_points = config["anchor_points"][self.granularity]["middle"]
        self.anchor_points = [float(p) for p in self.anchor_points]
        
    def _initialize_model(self):
        """CLIP ๋ชจ๋ธ์„ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค."""
        self.model = get_model(
            backbone=self.model_name,
            input_size=self.input_size,
            reduction=self.reduction,
            bins=self.bins,
            anchor_points=self.anchor_points,
            prompt_type=self.prompt_type,
            num_vpt=self.num_vpt,
            vpt_drop=self.vpt_drop,
            deep_vpt=self.deep_vpt
        )

        ckpt_path = "assets/CLIP_EBC_nwpu_rmse.pth"
        ckpt = torch.load(ckpt_path, map_location=device)
        self.model.load_state_dict(ckpt)
        self.model = self.model.to(device)
        self.model.eval()

    def visualize_density_map(self, alpha: float = 0.5, save: bool = False, 
                            save_path: Optional[str] = None):
        """
        ํ˜„์žฌ ์ €์žฅ๋œ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            alpha (float): density map์˜ ํˆฌ๋ช…๋„ (0~1). ๊ธฐ๋ณธ๊ฐ’ 0.5
            save (bool): ์‹œ๊ฐํ™” ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง€๋กœ ์ €์žฅํ• ์ง€ ์—ฌ๋ถ€. ๊ธฐ๋ณธ๊ฐ’ False
            save_path (str, optional): ์ €์žฅํ•  ๊ฒฝ๋กœ. None์ผ ๊ฒฝ์šฐ ํ˜„์žฌ ๋””๋ ‰ํ† ๋ฆฌ์— ์ž๋™ ์ƒ์„ฑ๋œ ์ด๋ฆ„์œผ๋กœ ์ €์žฅ.
                ๊ธฐ๋ณธ๊ฐ’ None
                
        Returns:
            Tuple[matplotlib.figure.Figure, np.ndarray]:
                - density map์ด ์˜ค๋ฒ„๋ ˆ์ด๋œ matplotlib Figure ๊ฐ์ฒด
                - RGB ํ˜•์‹์˜ ์‹œ๊ฐํ™”๋œ ์ด๋ฏธ์ง€ ๋ฐฐ์—ด (H, W, 3)
        Raises:
            ValueError: density_map ๋˜๋Š” processed_image๊ฐ€ None์ธ ๊ฒฝ์šฐ (predict ๋ฉ”์„œ๋“œ๊ฐ€ ์‹คํ–‰๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ)
        """
        if self.density_map is None or self.processed_image is None:
            raise ValueError("๋จผ์ € predict ๋ฉ”์„œ๋“œ๋ฅผ ์‹คํ–‰ํ•˜์—ฌ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")
        
        fig, ax = plt.subplots(dpi=200, frameon=False)
        ax.imshow(self.processed_image)
        ax.imshow(self.density_map, cmap="jet", alpha=alpha)
        ax.axis("off")
        
        if save:
            if save_path is None:
                timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
                save_path = f"crowd_density_{timestamp}.png"
            
            # ์—ฌ๋ฐฑ ์ œ๊ฑฐํ•˜๊ณ  ์ €์žฅ
            plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=200)
            print(f"Image saved to: {save_path}")
        
        fig.canvas.draw()
        image_from_plot = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
        image_from_plot = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (4,))
        image_from_plot = image_from_plot[:,:,:3]  # RGB๋กœ ๋ณ€ํ™˜
        
        return fig , image_from_plot
    
    def visualize_dots(self, dot_size: int = 20, sigma: float = 1, percentile: float = 97, 
                    save: bool = False, save_path: Optional[str] = None):
        """
        ์˜ˆ์ธก๋œ ๊ตฐ์ค‘ ์œ„์น˜๋ฅผ ์ ์œผ๋กœ ํ‘œ์‹œํ•˜์—ฌ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            dot_size (int): ์ ์˜ ํฌ๊ธฐ. ๊ธฐ๋ณธ๊ฐ’ 20
            sigma (float): Gaussian ํ•„ํ„ฐ์˜ sigma ๊ฐ’. ๊ธฐ๋ณธ๊ฐ’ 1
            percentile (float): ์ž„๊ณ„๊ฐ’์œผ๋กœ ์‚ฌ์šฉํ•  ๋ฐฑ๋ถ„์œ„์ˆ˜ (0-100). ๊ธฐ๋ณธ๊ฐ’ 97
            save (bool): ์‹œ๊ฐํ™” ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง€๋กœ ์ €์žฅํ• ์ง€ ์—ฌ๋ถ€. ๊ธฐ๋ณธ๊ฐ’ False
            save_path (str, optional): ์ €์žฅํ•  ๊ฒฝ๋กœ. None์ผ ๊ฒฝ์šฐ ํ˜„์žฌ ๋””๋ ‰ํ† ๋ฆฌ์— ์ž๋™ ์ƒ์„ฑ๋œ ์ด๋ฆ„์œผ๋กœ ์ €์žฅ.
                ๊ธฐ๋ณธ๊ฐ’ None
                
        Returns:
            Tuple[matplotlib.backends.backend_agg.FigureCanvasBase, np.ndarray]: 
                - matplotlib figure์˜ canvas ๊ฐ์ฒด
                - RGB ํ˜•์‹์˜ ์‹œ๊ฐํ™”๋œ ์ด๋ฏธ์ง€ ๋ฐฐ์—ด (H, W, 3)
        Raises:
            ValueError: density_map ๋˜๋Š” processed_image๊ฐ€ None์ธ ๊ฒฝ์šฐ (predict ๋ฉ”์„œ๋“œ๊ฐ€ ์‹คํ–‰๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ)
        """
        if self.density_map is None or self.processed_image is None:
            raise ValueError("๋จผ์ € predict ๋ฉ”์„œ๋“œ๋ฅผ ์‹คํ–‰ํ•˜์—ฌ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")
            
        adjusted_pred_count = int(round(self.count))
        
        fig, ax = plt.subplots(dpi=200, frameon=False)
        ax.imshow(self.processed_image)
        
        filtered_density = gaussian_filter(self.density_map, sigma=sigma)
        
        threshold = np.percentile(filtered_density, percentile)
        candidate_pixels = np.column_stack(np.where(filtered_density >= threshold))
        
        if len(candidate_pixels) > adjusted_pred_count:
            kmeans = KMeans(n_clusters=adjusted_pred_count, random_state=42, n_init=10)
            kmeans.fit(candidate_pixels)
            head_positions = kmeans.cluster_centers_.astype(int)
        else:
            head_positions = candidate_pixels
            
        y_coords, x_coords = head_positions[:, 0], head_positions[:, 1]
        ax.scatter(x_coords, y_coords, 
                    c='red',
                    s=dot_size,
                    alpha=1.0,
                    edgecolors='white',
                    linewidth=1)
        
        ax.axis("off")
        
        if save:
            if save_path is None:
                timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
                save_path = f"crowd_dots_{timestamp}.png"
            
            plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=200)
            print(f"Image saved to: {save_path}")
        
        # Figure๋ฅผ numpy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜
        fig.canvas.draw()
        image_from_plot = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
        image_from_plot = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (4,))
        image_from_plot = image_from_plot[:,:,:3]  # RGB๋กœ ๋ณ€ํ™˜
        
        # plt.close(fig)
        # return image_from_plot
        return fig.canvas, image_from_plot
    
    def _process_image(self, image: Union[str, np.ndarray]) -> torch.Tensor:
        """
        ์ด๋ฏธ์ง€๋ฅผ ์ „์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ, ๋„˜ํŒŒ์ด ๋ฐฐ์—ด, Streamlit UploadedFile ๋ชจ๋‘ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            image: ์ž…๋ ฅ ์ด๋ฏธ์ง€. ๋‹ค์Œ ํ˜•์‹ ์ค‘ ํ•˜๋‚˜์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค:
                - str: ์ด๋ฏธ์ง€ ํŒŒ์ผ ๊ฒฝ๋กœ
                - np.ndarray: (H, W, 3) ํ˜•ํƒœ์˜ RGB ์ด๋ฏธ์ง€
                - UploadedFile: Streamlit์˜ ์—…๋กœ๋“œ๋œ ํŒŒ์ผ
                    
        Returns:
            torch.Tensor: ์ „์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€ ํ…์„œ, shape (1, 3, H, W)
            
        Raises:
            ValueError: ์ง€์›ํ•˜์ง€ ์•Š๋Š” ์ด๋ฏธ์ง€ ํ˜•์‹์ด ์ž…๋ ฅ๋œ ๊ฒฝ์šฐ
            Exception: ์ด๋ฏธ์ง€ ํŒŒ์ผ์„ ์—ด ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ
        """
        to_tensor = ToTensor()
        normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        
        # ์›๋ณธ ์ด๋ฏธ์ง€ ์ €์žฅ
        self.original_image = image
        
        # ์ž…๋ ฅ ํƒ€์ž…์— ๋”ฐ๋ฅธ ์ฒ˜๋ฆฌ
        if isinstance(image, str):
            # ํŒŒ์ผ ๊ฒฝ๋กœ์ธ ๊ฒฝ์šฐ
            with open(image, "rb") as f:
                pil_image = Image.open(f).convert("RGB")
        elif isinstance(image, np.ndarray):
            # ๋„˜ํŒŒ์ด ๋ฐฐ์—ด์ธ ๊ฒฝ์šฐ
            if image.dtype == np.uint8:
                pil_image = Image.fromarray(image)
            else:
                # float ํƒ€์ž…์ธ ๊ฒฝ์šฐ [0, 1] ๋ฒ”์œ„๋กœ ๊ฐ€์ •ํ•˜๊ณ  ๋ณ€ํ™˜
                pil_image = Image.fromarray((image * 255).astype(np.uint8))
        else:
            # Streamlit UploadedFile ๋˜๋Š” ๊ธฐํƒ€ ํŒŒ์ผ ๊ฐ์ฒด์ธ ๊ฒฝ์šฐ
            try:
                pil_image = Image.open(image).convert("RGB")
            except Exception as e:
                raise ValueError(f"์ง€์›ํ•˜์ง€ ์•Š๋Š” ์ด๋ฏธ์ง€ ํ˜•์‹์ž…๋‹ˆ๋‹ค: {type(image)}") from e
        
        # ํ…์„œ ๋ณ€ํ™˜ ๋ฐ ์ •๊ทœํ™”
        tensor_image = to_tensor(pil_image)
        normalized_image = normalize(tensor_image)
        batched_image = normalized_image.unsqueeze(0)  # (1, 3, H, W)
        batched_image = batched_image.to(self.device)

        return batched_image
    def _post_process_image(self, image):
        """์ด๋ฏธ์ง€ ํ›„์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค."""
        image = normalize(image, mean=(0., 0., 0.), 
                        std=(1. / self.std[0], 1. / self.std[1], 1. / self.std[2]))
        image = normalize(image, mean=(-self.mean[0], -self.mean[1], -self.mean[2]), 
                        std=(1., 1., 1.))
        processed_image = to_pil_image(image.squeeze(0))
        return processed_image

    @torch.no_grad()
    def predict(self, image: torch.Tensor) -> Image.Image:
        """
        ๋ชจ๋ธ ์ถœ๋ ฅ ์ด๋ฏธ์ง€์˜ ํ›„์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            image (torch.Tensor): ํ›„์ฒ˜๋ฆฌํ•  ์ด๋ฏธ์ง€ ํ…์„œ, shape (1, 3, H, W)
            
        Returns:
            PIL.Image.Image: ํ›„์ฒ˜๋ฆฌ๋œ PIL ์ด๋ฏธ์ง€
            
        Note:
            ์ด๋ฏธ์ง€ ํ…์„œ์— ๋Œ€ํ•ด ์ •๊ทœํ™”๋ฅผ ์—ญ๋ณ€ํ™˜ํ•˜๊ณ  PIL ์ด๋ฏธ์ง€ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
            self.mean๊ณผ self.std ๊ฐ’์„ ์‚ฌ์šฉํ•˜์—ฌ ์›๋ณธ ์ด๋ฏธ์ง€์˜ ์Šค์ผ€์ผ๋กœ ๋ณต์›ํ•ฉ๋‹ˆ๋‹ค.
        """
        processed_image = self._process_image(image)
        image_height, image_width = processed_image.shape[-2:]
        processed_image = processed_image.to(self.device)
        
        pred_density = sliding_window_predict(self.model, processed_image, 
                                        self.window_size, self.stride)
        pred_count = pred_density.sum().item()
        resized_pred_density = resize_density_map(pred_density, 
                                                (image_height, image_width)).cpu()
        
        self.processed_image = self._post_process_image(processed_image)
        self.density_map = resized_pred_density.squeeze().numpy()
        self.count = pred_count
        
        return pred_count
    
    def crowd_count(self):
        """
        ๊ฐ€์žฅ ์ตœ๊ทผ ์˜ˆ์ธก์˜ ๊ตฐ์ค‘ ์ˆ˜๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
        
        Returns:
            float: ์˜ˆ์ธก๋œ ๊ตฐ์ค‘ ์ˆ˜
            None: ์•„์ง ์˜ˆ์ธก์ด ์ˆ˜ํ–‰๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ
        """
        return self.count
    
    def get_density_map(self):
        """
        ๊ฐ€์žฅ ์ตœ๊ทผ ์˜ˆ์ธก์˜ ๋ฐ€๋„ ๋งต์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
        
        Returns:
            numpy.ndarray: ๋ฐ€๋„ ๋งต
            None: ์•„์ง ์˜ˆ์ธก์ด ์ˆ˜ํ–‰๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ
        """
        return self.density_map