Spaces:
Runtime error
Runtime error
File size: 19,203 Bytes
bb3e610 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import os
import sys
import torch
import numpy as np
import onnxruntime as ort
from typing import Union, Tuple, Optional
from PIL import Image
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor, Normalize
from torchvision.transforms.functional import normalize, to_pil_image
import json
import datetime
from scipy.ndimage import gaussian_filter
from sklearn.cluster import KMeans
import assets
# ํ๋ก์ ํธ ๋ฃจํธ ๋๋ ํ ๋ฆฌ ์ค์
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(project_root)
class ClipEBCOnnx:
"""
CLIP-EBC (Efficient Boundary Counting) ONNX ๋ฒ์ ์ด๋ฏธ์ง ์ฒ๋ฆฌ ํด๋์ค์
๋๋ค.
ONNX๋ก ๋ณํ๋ CLIP ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ์ด๋ฏธ์ง๋ฅผ ์ฒ๋ฆฌํ๋ฉฐ, ์ฌ๋ผ์ด๋ฉ ์๋์ฐ ์์ธก ๊ธฐ๋ฅ์ ํฌํจํ
๋ค์ํ ์ค์ ์ต์
์ ์ ๊ณตํฉ๋๋ค.
"""
def __init__(self,
onnx_model_path="assets/CLIP_EBC_nwpu_rmse_onnx.onnx",
truncation=4,
reduction=8,
granularity="fine",
anchor_points="average",
input_size=224,
window_size=224,
stride=224,
dataset_name="qnrf",
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
config_dir="configs"):
"""CLIPEBC ONNX ํด๋์ค๋ฅผ ์ค์ ๋งค๊ฐ๋ณ์์ ํจ๊ป ์ด๊ธฐํํฉ๋๋ค."""
self.onnx_model_path = onnx_model_path
self.truncation = truncation
self.reduction = reduction
self.granularity = granularity
self.anchor_points_type = anchor_points
self.input_size = input_size
self.window_size = window_size
self.stride = stride
self.dataset_name = dataset_name
self.mean = mean
self.std = std
self.config_dir = config_dir
# ๊ฒฐ๊ณผ ์ ์ฅ์ฉ ๋ณ์ ์ด๊ธฐํ
self.density_map = None
self.processed_image = None
self.count = None
self.original_image = None
# ONNX ์ถ๋ก ์ธ์
์ค์
self.session_options = ort.SessionOptions()
self.session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
# ๊ฐ๋ฅํ ๊ฒฝ์ฐ GPU ์ฌ์ฉ
self.providers = []
if 'CUDAExecutionProvider' in ort.get_available_providers():
self.providers.append('CUDAExecutionProvider')
self.providers.append('CPUExecutionProvider')
# ONNX ๋ฐํ์ ์ธ์
์ด๊ธฐํ
print(f"ONNX ๋ชจ๋ธ ๋ก๋ ์ค: {self.onnx_model_path}")
self.session = ort.InferenceSession(
self.onnx_model_path,
sess_options=self.session_options,
providers=self.providers
)
# ๋ชจ๋ธ์ ์
๋ ฅ ๋ฐ ์ถ๋ ฅ ์ด๋ฆ ๊ฐ์ ธ์ค๊ธฐ
self.input_name = self.session.get_inputs()[0].name
self.output_name = self.session.get_outputs()[0].name
print(f"์
๋ ฅ ์ด๋ฆ: {self.input_name}, ํํ: {self.session.get_inputs()[0].shape}")
print(f"์ถ๋ ฅ ์ด๋ฆ: {self.output_name}, ํํ: {self.session.get_outputs()[0].shape}")
print(f"์คํ ์ ๊ณต์: {self.providers}")
def _process_image(self, image: Union[str, np.ndarray]) -> np.ndarray:
"""
์ด๋ฏธ์ง๋ฅผ ์ ์ฒ๋ฆฌํฉ๋๋ค. ์ด๋ฏธ์ง ๊ฒฝ๋ก, ๋ํ์ด ๋ฐฐ์ด, Streamlit UploadedFile ๋ชจ๋ ์ฒ๋ฆฌ ๊ฐ๋ฅํฉ๋๋ค.
Args:
image: ์
๋ ฅ ์ด๋ฏธ์ง. ๋ค์ ํ์ ์ค ํ๋์ฌ์ผ ํฉ๋๋ค:
- str: ์ด๋ฏธ์ง ํ์ผ ๊ฒฝ๋ก
- np.ndarray: (H, W, 3) ํํ์ RGB ์ด๋ฏธ์ง
- UploadedFile: Streamlit์ ์
๋ก๋๋ ํ์ผ
Returns:
np.ndarray: ์ ์ฒ๋ฆฌ๋ ์ด๋ฏธ์ง ๋ฐฐ์ด, shape (1, 3, H, W)
"""
to_tensor = ToTensor()
normalize = Normalize(mean=self.mean, std=self.std)
# ์๋ณธ ์ด๋ฏธ์ง ์ ์ฅ
self.original_image = image
# ์
๋ ฅ ํ์
์ ๋ฐ๋ฅธ ์ฒ๋ฆฌ
if isinstance(image, str):
# ํ์ผ ๊ฒฝ๋ก์ธ ๊ฒฝ์ฐ
with open(image, "rb") as f:
pil_image = Image.open(f).convert("RGB")
elif isinstance(image, np.ndarray):
# ๋ํ์ด ๋ฐฐ์ด์ธ ๊ฒฝ์ฐ
if image.dtype == np.uint8:
pil_image = Image.fromarray(image)
else:
# float ํ์
์ธ ๊ฒฝ์ฐ [0, 1] ๋ฒ์๋ก ๊ฐ์ ํ๊ณ ๋ณํ
pil_image = Image.fromarray((image * 255).astype(np.uint8))
else:
# Streamlit UploadedFile ๋๋ ๊ธฐํ ํ์ผ ๊ฐ์ฒด์ธ ๊ฒฝ์ฐ
try:
pil_image = Image.open(image).convert("RGB")
except Exception as e:
raise ValueError(f"์ง์ํ์ง ์๋ ์ด๋ฏธ์ง ํ์์
๋๋ค: {type(image)}") from e
# ํ
์ ๋ณํ ๋ฐ ์ ๊ทํ
tensor_image = to_tensor(pil_image)
normalized_image = normalize(tensor_image)
batched_image = normalized_image.unsqueeze(0) # (1, 3, H, W)
# numpy๋ก ๋ณํ
numpy_image = batched_image.numpy()
return numpy_image
def _post_process_image(self, image_tensor):
"""์ด๋ฏธ์ง ํ
์๋ฅผ PIL ์ด๋ฏธ์ง๋ก ๋ณํํฉ๋๋ค."""
# NumPy ๋ฐฐ์ด์ PyTorch ํ
์๋ก ๋ณํ
if isinstance(image_tensor, np.ndarray):
image_tensor = torch.from_numpy(image_tensor)
# ์ ๊ทํ ์ญ๋ณํ
image = normalize(
image_tensor,
mean=[0., 0., 0.],
std=[1./self.std[0], 1./self.std[1], 1./self.std[2]]
)
image = normalize(
image,
mean=[-self.mean[0], -self.mean[1], -self.mean[2]],
std=[1., 1., 1.]
)
# ๋ฐฐ์น ์ฐจ์ ์ ๊ฑฐ ๋ฐ PIL ์ด๋ฏธ์ง๋ก ๋ณํ
processed_image = to_pil_image(image.squeeze(0))
return processed_image
def sliding_window_predict(self, image: np.ndarray, window_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]]) -> np.ndarray:
"""
์ฌ๋ผ์ด๋ฉ ์๋์ฐ ๋ฐฉ์์ผ๋ก ์ด๋ฏธ์ง ์์ธก์ ์ํํฉ๋๋ค. ๊ฒน์น๋ ์์ญ์ ํ๊ท ๊ฐ์ ์ฌ์ฉํฉ๋๋ค.
Args:
image (np.ndarray): ํํ๊ฐ (1, 3, H, W)์ธ ์ด๋ฏธ์ง ๋ฐฐ์ด
window_size (int or tuple): ์๋์ฐ ํฌ๊ธฐ
stride (int or tuple): ์๋์ฐ ์ด๋ ๊ฐ๊ฒฉ
Returns:
np.ndarray: ์์ธก๋ ๋ฐ๋ ๋งต
"""
# ์
๋ ฅ ๊ฒ์ฆ
assert len(image.shape) == 4, f"์ด๋ฏธ์ง๋ 4์ฐจ์ ๋ฐฐ์ด์ด์ด์ผ ํฉ๋๋ค. (1, C, H, W), ํ์ฌ: {image.shape}"
# ์๋์ฐ ํฌ๊ธฐ์ ์คํธ๋ผ์ด๋ ์ค์
window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size
stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride
window_size = tuple(window_size)
stride = tuple(stride)
# ๊ฒ์ฆ
assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, \
f"์๋์ฐ ํฌ๊ธฐ๋ ์์ ์ ์ ํํ (h, w)์ด์ด์ผ ํฉ๋๋ค. ํ์ฌ: {window_size}"
assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, \
f"์คํธ๋ผ์ด๋๋ ์์ ์ ์ ํํ (h, w)์ด์ด์ผ ํฉ๋๋ค. ํ์ฌ: {stride}"
assert stride[0] <= window_size[0] and stride[1] <= window_size[1], \
f"์คํธ๋ผ์ด๋๋ ์๋์ฐ ํฌ๊ธฐ๋ณด๋ค ์์์ผ ํฉ๋๋ค. ํ์ฌ: {stride}์ {window_size}"
image_height, image_width = image.shape[-2:]
window_height, window_width = window_size
stride_height, stride_width = stride
# ์ฌ๋ผ์ด๋ฉ ์๋์ฐ ์ ๊ณ์ฐ
num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)
# ์๋์ฐ ์ถ์ถ
windows = []
window_positions = []
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start = i * stride_height, j * stride_width
x_end, y_end = x_start + window_height, y_start + window_width
# ์ด๋ฏธ์ง ๊ฒฝ๊ณ ์ฒ๋ฆฌ
if x_end > image_height:
x_start, x_end = image_height - window_height, image_height
if y_end > image_width:
y_start, y_end = image_width - window_width, image_width
window = image[:, :, x_start:x_end, y_start:y_end]
windows.append(window)
window_positions.append((x_start, y_start, x_end, y_end))
# ๋ฐฐ์น ๋จ์๋ก ์ถ๋ก
all_preds = []
max_batch_size = 8
for start_idx in range(0, len(windows), max_batch_size):
end_idx = min(start_idx + max_batch_size, len(windows))
batch_windows = np.vstack(windows[start_idx:end_idx]) # (batch_size, 3, h, w)
# ONNX ์ถ๋ก
ort_inputs = {self.input_name: batch_windows}
batch_preds = self.session.run([self.output_name], ort_inputs)[0]
# Debug ์ ๋ณด
# print(f"๋ฐฐ์น ์
๋ ฅ ํํ: {batch_windows.shape}, ๋ฐฐ์น ์ถ๋ ฅ ํํ: {batch_preds.shape}")
all_preds.extend([batch_preds[i:i+1] for i in range(batch_preds.shape[0])])
# ์์ธก ๊ฒฐ๊ณผ๋ฅผ numpy ๋ฐฐ์ด๋ก ๋ณํ
preds = np.concatenate(all_preds, axis=0)
# ์ถ๋ ฅ ๋ฐ๋ ๋งต ์กฐ๋ฆฝ
pred_map = np.zeros((preds.shape[1], image_height // self.reduction, image_width // self.reduction), dtype=np.float32)
count_map = np.zeros((preds.shape[1], image_height // self.reduction, image_width // self.reduction), dtype=np.float32)
idx = 0
for i in range(num_rows):
for j in range(num_cols):
x_start, y_start, x_end, y_end = window_positions[idx]
# ์ถ๋ ฅ ์์ญ ๊ณ์ฐ (reduction ๊ณ ๋ ค)
x_start_out = x_start // self.reduction
y_start_out = y_start // self.reduction
x_end_out = x_end // self.reduction
y_end_out = y_end // self.reduction
pred_map[:, x_start_out:x_end_out, y_start_out:y_end_out] += preds[idx]
count_map[:, x_start_out:x_end_out, y_start_out:y_end_out] += 1.
idx += 1
# ๊ฒน์น๋ ์์ญ ํ๊ท ๊ณ์ฐ
pred_map /= count_map
return pred_map
def resize_density_map(self, density_map: np.ndarray, target_size: Tuple[int, int]) -> np.ndarray:
"""
๋ฐ๋ ๋งต์ ํฌ๊ธฐ๋ฅผ ์กฐ์ ํฉ๋๋ค. ์ดํฉ์ ๋ณด์กด๋ฉ๋๋ค.
Args:
density_map: ํํ๊ฐ (C, H, W)์ธ ๋ฐ๋ ๋งต
target_size: ๋ชฉํ ํฌ๊ธฐ (H', W')
Returns:
np.ndarray: ํฌ๊ธฐ๊ฐ ์กฐ์ ๋ ๋ฐ๋ ๋งต
"""
from PIL import Image
import torch.nn.functional as F
import torch
# numpy๋ฅผ torch๋ก ๋ณํ
if isinstance(density_map, np.ndarray):
density_map = torch.from_numpy(density_map)
# ๋ฐฐ์น ์ฐจ์ ์ถ๊ฐ
if density_map.dim() == 3:
density_map = density_map.unsqueeze(0) # (1, C, H, W)
current_size = density_map.shape[2:]
if current_size[0] == target_size[0] and current_size[1] == target_size[1]:
return density_map.squeeze(0).numpy()
# ์๋ณธ ๋ฐ๋ ๋งต์ ์ดํฉ ๊ณ์ฐ
original_sum = density_map.sum()
# ํฌ๊ธฐ ์กฐ์ (์์ ํ ๋ณด๊ฐ)
resized_map = F.interpolate(
density_map,
size=target_size,
mode='bilinear',
align_corners=False
)
# ์ดํฉ ๋ณด์กด์ ์ํ ์ค์ผ์ผ๋ง
if resized_map.sum() > 0: # 0์ผ๋ก ๋๋๊ธฐ ๋ฐฉ์ง
resized_map = resized_map * (original_sum / resized_map.sum())
return resized_map.squeeze(0).numpy()
def predict(self, image: Union[str, np.ndarray]) -> float:
"""
์ด๋ฏธ์ง์์ ๊ตฐ์ค ๊ณ์ ์์ธก์ ์ํํฉ๋๋ค.
Args:
image: ์
๋ ฅ ์ด๋ฏธ์ง (๊ฒฝ๋ก, ๋ํ์ด ๋ฐฐ์ด, ๋๋ ์
๋ก๋๋ ํ์ผ)
Returns:
float: ์์ธก๋ ์ฌ๋ ์
"""
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ
processed_image = self._process_image(image)
image_height, image_width = processed_image.shape[-2:]
# ์ฌ๋ผ์ด๋ฉ ์๋์ฐ ์์ธก
pred_density = self.sliding_window_predict(
processed_image,
self.window_size,
self.stride
)
# ์์ธก ๊ฒฐ๊ณผ ์ ์ฅ
pred_count = pred_density.sum()
# ์๋ณธ ์ด๋ฏธ์ง ํฌ๊ธฐ๋ก ๋ฐ๋ ๋งต ์กฐ์
resized_pred_density = self.resize_density_map(
pred_density,
(image_height, image_width)
)
# ๊ฒฐ๊ณผ ์ ์ฅ
self.processed_image = self._post_process_image(processed_image)
self.density_map = resized_pred_density.squeeze()
self.count = pred_count
return pred_count
def visualize_density_map(self, alpha: float = 0.5, save: bool = False,
save_path: Optional[str] = None):
"""
ํ์ฌ ์ ์ฅ๋ ์์ธก ๊ฒฐ๊ณผ๋ฅผ ์๊ฐํํฉ๋๋ค.
Args:
alpha (float): density map์ ํฌ๋ช
๋ (0~1). ๊ธฐ๋ณธ๊ฐ 0.5
save (bool): ์๊ฐํ ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง๋ก ์ ์ฅํ ์ง ์ฌ๋ถ. ๊ธฐ๋ณธ๊ฐ False
save_path (str, optional): ์ ์ฅํ ๊ฒฝ๋ก. None์ผ ๊ฒฝ์ฐ ํ์ฌ ๋๋ ํ ๋ฆฌ์ ์๋ ์์ฑ๋ ์ด๋ฆ์ผ๋ก ์ ์ฅ.
๊ธฐ๋ณธ๊ฐ None
Returns:
Tuple[matplotlib.figure.Figure, np.ndarray]:
- density map์ด ์ค๋ฒ๋ ์ด๋ matplotlib Figure ๊ฐ์ฒด
- RGB ํ์์ ์๊ฐํ๋ ์ด๋ฏธ์ง ๋ฐฐ์ด (H, W, 3)
"""
if self.density_map is None or self.processed_image is None:
raise ValueError("๋จผ์ predict ๋ฉ์๋๋ฅผ ์คํํ์ฌ ์์ธก์ ์ํํด์ผ ํฉ๋๋ค.")
fig, ax = plt.subplots(dpi=200, frameon=False)
ax.imshow(self.processed_image)
ax.imshow(self.density_map, cmap="jet", alpha=alpha)
ax.axis("off")
plt.title(f"Count: {self.count:.1f}")
if save:
if save_path is None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
save_path = f"crowd_density_{timestamp}.png"
# ์ฌ๋ฐฑ ์ ๊ฑฐํ๊ณ ์ ์ฅ
plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=200)
print(f"์ด๋ฏธ์ง ์ ์ฅ ์๋ฃ: {save_path}")
fig.canvas.draw()
image_from_plot = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
image_from_plot = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (4,))
image_from_plot = image_from_plot[:,:,:3] # RGB๋ก ๋ณํ
return fig, image_from_plot
def visualize_dots(self, dot_size: int = 20, sigma: float = 1, percentile: float = 97,
save: bool = False, save_path: Optional[str] = None):
"""
์์ธก๋ ๊ตฐ์ค ์์น๋ฅผ ์ ์ผ๋ก ํ์ํ์ฌ ์๊ฐํํฉ๋๋ค.
Args:
dot_size (int): ์ ์ ํฌ๊ธฐ. ๊ธฐ๋ณธ๊ฐ 20
sigma (float): Gaussian ํํฐ์ sigma ๊ฐ. ๊ธฐ๋ณธ๊ฐ 1
percentile (float): ์๊ณ๊ฐ์ผ๋ก ์ฌ์ฉํ ๋ฐฑ๋ถ์์ (0-100). ๊ธฐ๋ณธ๊ฐ 97
save (bool): ์๊ฐํ ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง๋ก ์ ์ฅํ ์ง ์ฌ๋ถ. ๊ธฐ๋ณธ๊ฐ False
save_path (str, optional): ์ ์ฅํ ๊ฒฝ๋ก. None์ผ ๊ฒฝ์ฐ ํ์ฌ ๋๋ ํ ๋ฆฌ์ ์๋ ์์ฑ๋ ์ด๋ฆ์ผ๋ก ์ ์ฅ.
๊ธฐ๋ณธ๊ฐ None
Returns:
Tuple[matplotlib.backends.backend_agg.FigureCanvasBase, np.ndarray]:
- matplotlib figure์ canvas ๊ฐ์ฒด
- RGB ํ์์ ์๊ฐํ๋ ์ด๋ฏธ์ง ๋ฐฐ์ด (H, W, 3)
"""
if self.density_map is None or self.processed_image is None:
raise ValueError("๋จผ์ predict ๋ฉ์๋๋ฅผ ์คํํ์ฌ ์์ธก์ ์ํํด์ผ ํฉ๋๋ค.")
adjusted_pred_count = int(round(self.count))
fig, ax = plt.subplots(dpi=200, frameon=False)
ax.imshow(self.processed_image)
filtered_density = gaussian_filter(self.density_map, sigma=sigma)
threshold = np.percentile(filtered_density, percentile)
candidate_pixels = np.column_stack(np.where(filtered_density >= threshold))
if len(candidate_pixels) > adjusted_pred_count:
kmeans = KMeans(n_clusters=adjusted_pred_count, random_state=42, n_init=10)
kmeans.fit(candidate_pixels)
head_positions = kmeans.cluster_centers_.astype(int)
else:
head_positions = candidate_pixels
y_coords, x_coords = head_positions[:, 0], head_positions[:, 1]
ax.scatter(x_coords, y_coords,
c='red',
s=dot_size,
alpha=1.0,
edgecolors='white',
linewidth=1)
ax.axis("off")
plt.title(f"Count: {self.count:.1f}")
if save:
if save_path is None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
save_path = f"crowd_dots_{timestamp}.png"
plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=200)
print(f"์ด๋ฏธ์ง ์ ์ฅ ์๋ฃ: {save_path}")
# Figure๋ฅผ numpy ๋ฐฐ์ด๋ก ๋ณํ
fig.canvas.draw()
image_from_plot = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
image_from_plot = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (4,))
image_from_plot = image_from_plot[:,:,:3] # RGB๋ก ๋ณํ
return fig.canvas, image_from_plot
def crowd_count(self):
"""
๊ฐ์ฅ ์ต๊ทผ ์์ธก์ ๊ตฐ์ค ์๋ฅผ ๋ฐํํฉ๋๋ค.
Returns:
float: ์์ธก๋ ๊ตฐ์ค ์
None: ์์ง ์์ธก์ด ์ํ๋์ง ์์ ๊ฒฝ์ฐ
"""
return self.count
def get_density_map(self):
"""
๊ฐ์ฅ ์ต๊ทผ ์์ธก์ ๋ฐ๋ ๋งต์ ๋ฐํํฉ๋๋ค.
Returns:
numpy.ndarray: ๋ฐ๋ ๋งต
None: ์์ง ์์ธก์ด ์ํ๋์ง ์์ ๊ฒฝ์ฐ
"""
return self.density_map |