File size: 19,203 Bytes
bb3e610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import os
import sys
import torch
import numpy as np
import onnxruntime as ort
from typing import Union, Tuple, Optional
from PIL import Image
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor, Normalize
from torchvision.transforms.functional import normalize, to_pil_image
import json
import datetime
from scipy.ndimage import gaussian_filter
from sklearn.cluster import KMeans
import assets

# ํ”„๋กœ์ ํŠธ ๋ฃจํŠธ ๋””๋ ‰ํ† ๋ฆฌ ์„ค์ •
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(project_root)

class ClipEBCOnnx:
    """
    CLIP-EBC (Efficient Boundary Counting) ONNX ๋ฒ„์ „ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ํด๋ž˜์Šค์ž…๋‹ˆ๋‹ค.
    
    ONNX๋กœ ๋ณ€ํ™˜๋œ CLIP ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๋ฉฐ, ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์˜ˆ์ธก ๊ธฐ๋Šฅ์„ ํฌํ•จํ•œ
    ๋‹ค์–‘ํ•œ ์„ค์ • ์˜ต์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
    """
    
    def __init__(self,
                 onnx_model_path="assets/CLIP_EBC_nwpu_rmse_onnx.onnx",
                 truncation=4,
                 reduction=8,
                 granularity="fine",
                 anchor_points="average",
                 input_size=224,
                 window_size=224,
                 stride=224,
                 dataset_name="qnrf",
                 mean=(0.485, 0.456, 0.406),
                 std=(0.229, 0.224, 0.225),
                 config_dir="configs"):
        """CLIPEBC ONNX ํด๋ž˜์Šค๋ฅผ ์„ค์ • ๋งค๊ฐœ๋ณ€์ˆ˜์™€ ํ•จ๊ป˜ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค."""
        self.onnx_model_path = onnx_model_path
        self.truncation = truncation
        self.reduction = reduction
        self.granularity = granularity
        self.anchor_points_type = anchor_points
        self.input_size = input_size
        self.window_size = window_size
        self.stride = stride
        self.dataset_name = dataset_name
        self.mean = mean
        self.std = std
        self.config_dir = config_dir
        
        # ๊ฒฐ๊ณผ ์ €์žฅ์šฉ ๋ณ€์ˆ˜ ์ดˆ๊ธฐํ™”
        self.density_map = None
        self.processed_image = None
        self.count = None
        self.original_image = None
        
        # ONNX ์ถ”๋ก  ์„ธ์…˜ ์„ค์ •
        self.session_options = ort.SessionOptions()
        self.session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
        
        # ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ GPU ์‚ฌ์šฉ
        self.providers = []
        if 'CUDAExecutionProvider' in ort.get_available_providers():
            self.providers.append('CUDAExecutionProvider')
        self.providers.append('CPUExecutionProvider')
        
        # ONNX ๋Ÿฐํƒ€์ž„ ์„ธ์…˜ ์ดˆ๊ธฐํ™”
        print(f"ONNX ๋ชจ๋ธ ๋กœ๋“œ ์ค‘: {self.onnx_model_path}")
        self.session = ort.InferenceSession(
            self.onnx_model_path, 
            sess_options=self.session_options,
            providers=self.providers
        )
        
        # ๋ชจ๋ธ์˜ ์ž…๋ ฅ ๋ฐ ์ถœ๋ ฅ ์ด๋ฆ„ ๊ฐ€์ ธ์˜ค๊ธฐ
        self.input_name = self.session.get_inputs()[0].name
        self.output_name = self.session.get_outputs()[0].name
        
        print(f"์ž…๋ ฅ ์ด๋ฆ„: {self.input_name}, ํ˜•ํƒœ: {self.session.get_inputs()[0].shape}")
        print(f"์ถœ๋ ฅ ์ด๋ฆ„: {self.output_name}, ํ˜•ํƒœ: {self.session.get_outputs()[0].shape}")
        print(f"์‹คํ–‰ ์ œ๊ณต์ž: {self.providers}")
        
    def _process_image(self, image: Union[str, np.ndarray]) -> np.ndarray:
        """
        ์ด๋ฏธ์ง€๋ฅผ ์ „์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค. ์ด๋ฏธ์ง€ ๊ฒฝ๋กœ, ๋„˜ํŒŒ์ด ๋ฐฐ์—ด, Streamlit UploadedFile ๋ชจ๋‘ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            image: ์ž…๋ ฅ ์ด๋ฏธ์ง€. ๋‹ค์Œ ํ˜•์‹ ์ค‘ ํ•˜๋‚˜์—ฌ์•ผ ํ•ฉ๋‹ˆ๋‹ค:
                - str: ์ด๋ฏธ์ง€ ํŒŒ์ผ ๊ฒฝ๋กœ
                - np.ndarray: (H, W, 3) ํ˜•ํƒœ์˜ RGB ์ด๋ฏธ์ง€
                - UploadedFile: Streamlit์˜ ์—…๋กœ๋“œ๋œ ํŒŒ์ผ
                    
        Returns:
            np.ndarray: ์ „์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€ ๋ฐฐ์—ด, shape (1, 3, H, W)
        """
        to_tensor = ToTensor()
        normalize = Normalize(mean=self.mean, std=self.std)
        
        # ์›๋ณธ ์ด๋ฏธ์ง€ ์ €์žฅ
        self.original_image = image
        
        # ์ž…๋ ฅ ํƒ€์ž…์— ๋”ฐ๋ฅธ ์ฒ˜๋ฆฌ
        if isinstance(image, str):
            # ํŒŒ์ผ ๊ฒฝ๋กœ์ธ ๊ฒฝ์šฐ
            with open(image, "rb") as f:
                pil_image = Image.open(f).convert("RGB")
        elif isinstance(image, np.ndarray):
            # ๋„˜ํŒŒ์ด ๋ฐฐ์—ด์ธ ๊ฒฝ์šฐ
            if image.dtype == np.uint8:
                pil_image = Image.fromarray(image)
            else:
                # float ํƒ€์ž…์ธ ๊ฒฝ์šฐ [0, 1] ๋ฒ”์œ„๋กœ ๊ฐ€์ •ํ•˜๊ณ  ๋ณ€ํ™˜
                pil_image = Image.fromarray((image * 255).astype(np.uint8))
        else:
            # Streamlit UploadedFile ๋˜๋Š” ๊ธฐํƒ€ ํŒŒ์ผ ๊ฐ์ฒด์ธ ๊ฒฝ์šฐ
            try:
                pil_image = Image.open(image).convert("RGB")
            except Exception as e:
                raise ValueError(f"์ง€์›ํ•˜์ง€ ์•Š๋Š” ์ด๋ฏธ์ง€ ํ˜•์‹์ž…๋‹ˆ๋‹ค: {type(image)}") from e
        
        # ํ…์„œ ๋ณ€ํ™˜ ๋ฐ ์ •๊ทœํ™”
        tensor_image = to_tensor(pil_image)
        normalized_image = normalize(tensor_image)
        batched_image = normalized_image.unsqueeze(0)  # (1, 3, H, W)
        
        # numpy๋กœ ๋ณ€ํ™˜
        numpy_image = batched_image.numpy()
        
        return numpy_image
    
    def _post_process_image(self, image_tensor):
        """์ด๋ฏธ์ง€ ํ…์„œ๋ฅผ PIL ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค."""
        # NumPy ๋ฐฐ์—ด์„ PyTorch ํ…์„œ๋กœ ๋ณ€ํ™˜
        if isinstance(image_tensor, np.ndarray):
            image_tensor = torch.from_numpy(image_tensor)
            
        # ์ •๊ทœํ™” ์—ญ๋ณ€ํ™˜
        image = normalize(
            image_tensor,
            mean=[0., 0., 0.],
            std=[1./self.std[0], 1./self.std[1], 1./self.std[2]]
        )
        
        image = normalize(
            image,
            mean=[-self.mean[0], -self.mean[1], -self.mean[2]],
            std=[1., 1., 1.]
        )
        
        # ๋ฐฐ์น˜ ์ฐจ์› ์ œ๊ฑฐ ๋ฐ PIL ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜
        processed_image = to_pil_image(image.squeeze(0))
        return processed_image

    def sliding_window_predict(self, image: np.ndarray, window_size: Union[int, Tuple[int, int]], 
                             stride: Union[int, Tuple[int, int]]) -> np.ndarray:
        """
        ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ๋ฐฉ์‹์œผ๋กœ ์ด๋ฏธ์ง€ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค. ๊ฒน์น˜๋Š” ์˜์—ญ์€ ํ‰๊ท ๊ฐ’์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            image (np.ndarray): ํ˜•ํƒœ๊ฐ€ (1, 3, H, W)์ธ ์ด๋ฏธ์ง€ ๋ฐฐ์—ด
            window_size (int or tuple): ์œˆ๋„์šฐ ํฌ๊ธฐ
            stride (int or tuple): ์œˆ๋„์šฐ ์ด๋™ ๊ฐ„๊ฒฉ
            
        Returns:
            np.ndarray: ์˜ˆ์ธก๋œ ๋ฐ€๋„ ๋งต
        """
        # ์ž…๋ ฅ ๊ฒ€์ฆ
        assert len(image.shape) == 4, f"์ด๋ฏธ์ง€๋Š” 4์ฐจ์› ๋ฐฐ์—ด์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. (1, C, H, W), ํ˜„์žฌ: {image.shape}"
        
        # ์œˆ๋„์šฐ ํฌ๊ธฐ์™€ ์ŠคํŠธ๋ผ์ด๋“œ ์„ค์ •
        window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size
        stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride
        window_size = tuple(window_size)
        stride = tuple(stride)
        
        # ๊ฒ€์ฆ
        assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, \
            f"์œˆ๋„์šฐ ํฌ๊ธฐ๋Š” ์–‘์ˆ˜ ์ •์ˆ˜ ํŠœํ”Œ (h, w)์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ: {window_size}"
        assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, \
            f"์ŠคํŠธ๋ผ์ด๋“œ๋Š” ์–‘์ˆ˜ ์ •์ˆ˜ ํŠœํ”Œ (h, w)์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ: {stride}"
        assert stride[0] <= window_size[0] and stride[1] <= window_size[1], \
            f"์ŠคํŠธ๋ผ์ด๋“œ๋Š” ์œˆ๋„์šฐ ํฌ๊ธฐ๋ณด๋‹ค ์ž‘์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. ํ˜„์žฌ: {stride}์™€ {window_size}"
        
        image_height, image_width = image.shape[-2:]
        window_height, window_width = window_size
        stride_height, stride_width = stride
        
        # ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์ˆ˜ ๊ณ„์‚ฐ
        num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
        num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)
        
        # ์œˆ๋„์šฐ ์ถ”์ถœ
        windows = []
        window_positions = []
        for i in range(num_rows):
            for j in range(num_cols):
                x_start, y_start = i * stride_height, j * stride_width
                x_end, y_end = x_start + window_height, y_start + window_width
                
                # ์ด๋ฏธ์ง€ ๊ฒฝ๊ณ„ ์ฒ˜๋ฆฌ
                if x_end > image_height:
                    x_start, x_end = image_height - window_height, image_height
                if y_end > image_width:
                    y_start, y_end = image_width - window_width, image_width
                
                window = image[:, :, x_start:x_end, y_start:y_end]
                windows.append(window)
                window_positions.append((x_start, y_start, x_end, y_end))
        
        # ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ ์ถ”๋ก 
        all_preds = []
        max_batch_size = 8
        
        for start_idx in range(0, len(windows), max_batch_size):
            end_idx = min(start_idx + max_batch_size, len(windows))
            batch_windows = np.vstack(windows[start_idx:end_idx])  # (batch_size, 3, h, w)
            
            # ONNX ์ถ”๋ก 
            ort_inputs = {self.input_name: batch_windows}
            batch_preds = self.session.run([self.output_name], ort_inputs)[0]
            
            # Debug ์ •๋ณด
            # print(f"๋ฐฐ์น˜ ์ž…๋ ฅ ํ˜•ํƒœ: {batch_windows.shape}, ๋ฐฐ์น˜ ์ถœ๋ ฅ ํ˜•ํƒœ: {batch_preds.shape}")
            
            all_preds.extend([batch_preds[i:i+1] for i in range(batch_preds.shape[0])])
        
        # ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ numpy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜
        preds = np.concatenate(all_preds, axis=0)
        
        # ์ถœ๋ ฅ ๋ฐ€๋„ ๋งต ์กฐ๋ฆฝ
        pred_map = np.zeros((preds.shape[1], image_height // self.reduction, image_width // self.reduction), dtype=np.float32)
        count_map = np.zeros((preds.shape[1], image_height // self.reduction, image_width // self.reduction), dtype=np.float32)
        
        idx = 0
        for i in range(num_rows):
            for j in range(num_cols):
                x_start, y_start, x_end, y_end = window_positions[idx]
                
                # ์ถœ๋ ฅ ์˜์—ญ ๊ณ„์‚ฐ (reduction ๊ณ ๋ ค)
                x_start_out = x_start // self.reduction
                y_start_out = y_start // self.reduction
                x_end_out = x_end // self.reduction
                y_end_out = y_end // self.reduction
                
                pred_map[:, x_start_out:x_end_out, y_start_out:y_end_out] += preds[idx]
                count_map[:, x_start_out:x_end_out, y_start_out:y_end_out] += 1.
                idx += 1
        
        # ๊ฒน์น˜๋Š” ์˜์—ญ ํ‰๊ท  ๊ณ„์‚ฐ
        pred_map /= count_map
        
        return pred_map

    def resize_density_map(self, density_map: np.ndarray, target_size: Tuple[int, int]) -> np.ndarray:
        """
        ๋ฐ€๋„ ๋งต์˜ ํฌ๊ธฐ๋ฅผ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค. ์ดํ•ฉ์€ ๋ณด์กด๋ฉ๋‹ˆ๋‹ค.
        
        Args:
            density_map: ํ˜•ํƒœ๊ฐ€ (C, H, W)์ธ ๋ฐ€๋„ ๋งต
            target_size: ๋ชฉํ‘œ ํฌ๊ธฐ (H', W')
            
        Returns:
            np.ndarray: ํฌ๊ธฐ๊ฐ€ ์กฐ์ •๋œ ๋ฐ€๋„ ๋งต
        """
        from PIL import Image
        import torch.nn.functional as F
        import torch
        
        # numpy๋ฅผ torch๋กœ ๋ณ€ํ™˜
        if isinstance(density_map, np.ndarray):
            density_map = torch.from_numpy(density_map)
        
        # ๋ฐฐ์น˜ ์ฐจ์› ์ถ”๊ฐ€
        if density_map.dim() == 3:
            density_map = density_map.unsqueeze(0)  # (1, C, H, W)
        
        current_size = density_map.shape[2:]
        
        if current_size[0] == target_size[0] and current_size[1] == target_size[1]:
            return density_map.squeeze(0).numpy()
        
        # ์›๋ณธ ๋ฐ€๋„ ๋งต์˜ ์ดํ•ฉ ๊ณ„์‚ฐ
        original_sum = density_map.sum()
        
        # ํฌ๊ธฐ ์กฐ์ • (์Œ์„ ํ˜• ๋ณด๊ฐ„)
        resized_map = F.interpolate(
            density_map,
            size=target_size,
            mode='bilinear',
            align_corners=False
        )
        
        # ์ดํ•ฉ ๋ณด์กด์„ ์œ„ํ•œ ์Šค์ผ€์ผ๋ง
        if resized_map.sum() > 0:  # 0์œผ๋กœ ๋‚˜๋ˆ„๊ธฐ ๋ฐฉ์ง€
            resized_map = resized_map * (original_sum / resized_map.sum())
        
        return resized_map.squeeze(0).numpy()

    def predict(self, image: Union[str, np.ndarray]) -> float:
        """
        ์ด๋ฏธ์ง€์—์„œ ๊ตฐ์ค‘ ๊ณ„์ˆ˜ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            image: ์ž…๋ ฅ ์ด๋ฏธ์ง€ (๊ฒฝ๋กœ, ๋„˜ํŒŒ์ด ๋ฐฐ์—ด, ๋˜๋Š” ์—…๋กœ๋“œ๋œ ํŒŒ์ผ)
            
        Returns:
            float: ์˜ˆ์ธก๋œ ์‚ฌ๋žŒ ์ˆ˜
        """
        # ์ด๋ฏธ์ง€ ์ „์ฒ˜๋ฆฌ
        processed_image = self._process_image(image)
        image_height, image_width = processed_image.shape[-2:]
        
        # ์Šฌ๋ผ์ด๋”ฉ ์œˆ๋„์šฐ ์˜ˆ์ธก
        pred_density = self.sliding_window_predict(
            processed_image, 
            self.window_size, 
            self.stride
        )
        
        # ์˜ˆ์ธก ๊ฒฐ๊ณผ ์ €์žฅ
        pred_count = pred_density.sum()
        
        # ์›๋ณธ ์ด๋ฏธ์ง€ ํฌ๊ธฐ๋กœ ๋ฐ€๋„ ๋งต ์กฐ์ •
        resized_pred_density = self.resize_density_map(
            pred_density, 
            (image_height, image_width)
        )
        
        # ๊ฒฐ๊ณผ ์ €์žฅ
        self.processed_image = self._post_process_image(processed_image)
        self.density_map = resized_pred_density.squeeze()
        self.count = pred_count
        
        return pred_count
    
    def visualize_density_map(self, alpha: float = 0.5, save: bool = False, 
                            save_path: Optional[str] = None):
        """
        ํ˜„์žฌ ์ €์žฅ๋œ ์˜ˆ์ธก ๊ฒฐ๊ณผ๋ฅผ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            alpha (float): density map์˜ ํˆฌ๋ช…๋„ (0~1). ๊ธฐ๋ณธ๊ฐ’ 0.5
            save (bool): ์‹œ๊ฐํ™” ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง€๋กœ ์ €์žฅํ• ์ง€ ์—ฌ๋ถ€. ๊ธฐ๋ณธ๊ฐ’ False
            save_path (str, optional): ์ €์žฅํ•  ๊ฒฝ๋กœ. None์ผ ๊ฒฝ์šฐ ํ˜„์žฌ ๋””๋ ‰ํ† ๋ฆฌ์— ์ž๋™ ์ƒ์„ฑ๋œ ์ด๋ฆ„์œผ๋กœ ์ €์žฅ.
                ๊ธฐ๋ณธ๊ฐ’ None
                
        Returns:
            Tuple[matplotlib.figure.Figure, np.ndarray]:
                - density map์ด ์˜ค๋ฒ„๋ ˆ์ด๋œ matplotlib Figure ๊ฐ์ฒด
                - RGB ํ˜•์‹์˜ ์‹œ๊ฐํ™”๋œ ์ด๋ฏธ์ง€ ๋ฐฐ์—ด (H, W, 3)
        """
        if self.density_map is None or self.processed_image is None:
            raise ValueError("๋จผ์ € predict ๋ฉ”์„œ๋“œ๋ฅผ ์‹คํ–‰ํ•˜์—ฌ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")
        
        fig, ax = plt.subplots(dpi=200, frameon=False)
        ax.imshow(self.processed_image)
        ax.imshow(self.density_map, cmap="jet", alpha=alpha)
        ax.axis("off")
        plt.title(f"Count: {self.count:.1f}")
        
        if save:
            if save_path is None:
                timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
                save_path = f"crowd_density_{timestamp}.png"
            
            # ์—ฌ๋ฐฑ ์ œ๊ฑฐํ•˜๊ณ  ์ €์žฅ
            plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=200)
            print(f"์ด๋ฏธ์ง€ ์ €์žฅ ์™„๋ฃŒ: {save_path}")
        
        fig.canvas.draw()
        image_from_plot = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
        image_from_plot = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (4,))
        image_from_plot = image_from_plot[:,:,:3]  # RGB๋กœ ๋ณ€ํ™˜
        
        return fig, image_from_plot
    
    def visualize_dots(self, dot_size: int = 20, sigma: float = 1, percentile: float = 97, 
                    save: bool = False, save_path: Optional[str] = None):
        """
        ์˜ˆ์ธก๋œ ๊ตฐ์ค‘ ์œ„์น˜๋ฅผ ์ ์œผ๋กœ ํ‘œ์‹œํ•˜์—ฌ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค.
        
        Args:
            dot_size (int): ์ ์˜ ํฌ๊ธฐ. ๊ธฐ๋ณธ๊ฐ’ 20
            sigma (float): Gaussian ํ•„ํ„ฐ์˜ sigma ๊ฐ’. ๊ธฐ๋ณธ๊ฐ’ 1
            percentile (float): ์ž„๊ณ„๊ฐ’์œผ๋กœ ์‚ฌ์šฉํ•  ๋ฐฑ๋ถ„์œ„์ˆ˜ (0-100). ๊ธฐ๋ณธ๊ฐ’ 97
            save (bool): ์‹œ๊ฐํ™” ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง€๋กœ ์ €์žฅํ• ์ง€ ์—ฌ๋ถ€. ๊ธฐ๋ณธ๊ฐ’ False
            save_path (str, optional): ์ €์žฅํ•  ๊ฒฝ๋กœ. None์ผ ๊ฒฝ์šฐ ํ˜„์žฌ ๋””๋ ‰ํ† ๋ฆฌ์— ์ž๋™ ์ƒ์„ฑ๋œ ์ด๋ฆ„์œผ๋กœ ์ €์žฅ.
                ๊ธฐ๋ณธ๊ฐ’ None
                
        Returns:
            Tuple[matplotlib.backends.backend_agg.FigureCanvasBase, np.ndarray]: 
                - matplotlib figure์˜ canvas ๊ฐ์ฒด
                - RGB ํ˜•์‹์˜ ์‹œ๊ฐํ™”๋œ ์ด๋ฏธ์ง€ ๋ฐฐ์—ด (H, W, 3)
        """
        if self.density_map is None or self.processed_image is None:
            raise ValueError("๋จผ์ € predict ๋ฉ”์„œ๋“œ๋ฅผ ์‹คํ–‰ํ•˜์—ฌ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")
            
        adjusted_pred_count = int(round(self.count))
        
        fig, ax = plt.subplots(dpi=200, frameon=False)
        ax.imshow(self.processed_image)
        
        filtered_density = gaussian_filter(self.density_map, sigma=sigma)
        
        threshold = np.percentile(filtered_density, percentile)
        candidate_pixels = np.column_stack(np.where(filtered_density >= threshold))
        
        if len(candidate_pixels) > adjusted_pred_count:
            kmeans = KMeans(n_clusters=adjusted_pred_count, random_state=42, n_init=10)
            kmeans.fit(candidate_pixels)
            head_positions = kmeans.cluster_centers_.astype(int)
        else:
            head_positions = candidate_pixels
            
        y_coords, x_coords = head_positions[:, 0], head_positions[:, 1]
        ax.scatter(x_coords, y_coords, 
                    c='red',
                    s=dot_size,
                    alpha=1.0,
                    edgecolors='white',
                    linewidth=1)
        
        ax.axis("off")
        plt.title(f"Count: {self.count:.1f}")
        
        if save:
            if save_path is None:
                timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
                save_path = f"crowd_dots_{timestamp}.png"
            
            plt.savefig(save_path, bbox_inches='tight', pad_inches=0, dpi=200)
            print(f"์ด๋ฏธ์ง€ ์ €์žฅ ์™„๋ฃŒ: {save_path}")
        
        # Figure๋ฅผ numpy ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜
        fig.canvas.draw()
        image_from_plot = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8)
        image_from_plot = image_from_plot.reshape(fig.canvas.get_width_height()[::-1] + (4,))
        image_from_plot = image_from_plot[:,:,:3]  # RGB๋กœ ๋ณ€ํ™˜
        
        return fig.canvas, image_from_plot
    
    def crowd_count(self):
        """
        ๊ฐ€์žฅ ์ตœ๊ทผ ์˜ˆ์ธก์˜ ๊ตฐ์ค‘ ์ˆ˜๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
        
        Returns:
            float: ์˜ˆ์ธก๋œ ๊ตฐ์ค‘ ์ˆ˜
            None: ์•„์ง ์˜ˆ์ธก์ด ์ˆ˜ํ–‰๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ
        """
        return self.count
    
    def get_density_map(self):
        """
        ๊ฐ€์žฅ ์ตœ๊ทผ ์˜ˆ์ธก์˜ ๋ฐ€๋„ ๋งต์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
        
        Returns:
            numpy.ndarray: ๋ฐ€๋„ ๋งต
            None: ์•„์ง ์˜ˆ์ธก์ด ์ˆ˜ํ–‰๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ
        """
        return self.density_map