File size: 5,292 Bytes
bb3e610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
from torch import Tensor
from tensorboardX import SummaryWriter
import logging
import os
from typing import Dict, Union, Optional, List, Tuple
from collections import OrderedDict


def get_logger(log_file: str) -> logging.Logger:
    logger = logging.getLogger(log_file)
    logger.setLevel(logging.DEBUG)
    fh = logging.FileHandler(log_file)
    fh.setLevel(logging.DEBUG)
    ch = logging.StreamHandler()
    ch.setLevel(logging.INFO)
    formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
    ch.setFormatter(formatter)
    fh.setFormatter(formatter)
    logger.addHandler(ch)
    logger.addHandler(fh)
    return logger


def get_config(config: Dict, mute: bool = False) -> str:
    config = config.copy()
    config = "\n".join([f"{k.ljust(15)}:\t{v}" for k, v in config.items()])
    if not mute:
        print(config)
    return config


def get_writer(ckpt_dir: str) -> SummaryWriter:
    return SummaryWriter(log_dir=os.path.join(ckpt_dir, "logs"))


def print_epoch(epoch: int, total_epochs: int, mute: bool = False) -> Union[str, None]:
    digits = len(str(total_epochs))
    info = f"Epoch: {(epoch):0{digits}d} / {total_epochs:0{digits}d}"
    if mute:
        return info
    print(info)


def print_train_result(loss_info: Dict[str, float], mute: bool = False) -> Union[str, None]:
    loss_info = [f"{k}: {v};" for k, v in loss_info.items()]
    info = "Training: " + " ".join(loss_info)
    if mute:
        return info
    print(info)


def print_eval_result(curr_scores: Dict[str, float], best_scores: Dict[str, float], mute: bool = False) -> Union[str, None]:
    scores = []
    for k in curr_scores.keys():
        info = f"Curr {k}: {curr_scores[k]:.4f}; \t Best {k}: "
        info += " ".join([f"{best_scores[k][i]:.4f};" for i in range(len(best_scores[k]))])
        scores.append(info)

    info = "Evaluation:\n" + "\n".join(scores)
    if mute:
        return info
    print(info)


def update_train_result(epoch: int, loss_info: Dict[str, float], writer: SummaryWriter) -> None:
    for k, v in loss_info.items():
        writer.add_scalar(f"train/{k}", v, epoch)


def update_eval_result(
    epoch: int,
    curr_scores: Dict[str, float],
    hist_scores: Dict[str, List[float]],
    best_scores: Dict[str, List[float]],
    writer: SummaryWriter,
    state_dict: OrderedDict[str, Tensor],
    ckpt_dir: str,
) -> Tuple[Dict[str, List[float]], Dict[str, float]]:
    os.makedirs(ckpt_dir, exist_ok=True)
    for k, v in curr_scores.items():
        hist_scores[k].append(v)
        writer.add_scalar(f"val/{k}", v, epoch)

        # best_scores[k][0] is the best score. Smaller is better.
        # Find the location idx where the new score v should be inserted
        loc = None
        for i in range(len(best_scores[k])):
            if v < best_scores[k][i]:
                best_scores[k].insert(i, v)  # Add the new best score to the location i
                loc = i
                break

        # If the new score is better than the worst best score
        if loc is not None: 
            # Update the best scores
            best_scores[k] = best_scores[k][:len(best_scores[k]) - 1]

            # Rename the best_{k}_{i}.pth to best_{k}_{i+1}.pth, best_{k}_{i+1}.pth to best_{k}_{i+2}.pth ...
            for i in range(len(best_scores[k]) - 1, loc, -1):
                if os.path.exists(os.path.join(ckpt_dir, f"best_{k}_{i-1}.pth")):
                    os.rename(os.path.join(ckpt_dir, f"best_{k}_{i-1}.pth"), os.path.join(ckpt_dir, f"best_{k}_{i}.pth"))

            # Save the best checkpoint
            torch.save(state_dict, os.path.join(ckpt_dir, f"best_{k}_{loc}.pth"))    

    return hist_scores, best_scores


def update_loss_info(hist_scores: Union[Dict[str, List[float]], None], curr_scores: Dict[str, float]) -> Dict[str, List[float]]:
    assert all([isinstance(v, float) for v in curr_scores.values()]), f"Expected all values to be float, got {curr_scores}"
    if hist_scores is None or len(hist_scores) == 0:
        hist_scores = {k: [v] for k, v in curr_scores.items()}
    else:
        for k, v in curr_scores.items():
            hist_scores[k].append(v)
    return hist_scores


def log(
    logger: logging.Logger,
    epoch: int, 
    total_epochs: int,
    loss_info: Optional[Dict[str, float]] = None,
    curr_scores: Optional[Dict[str, float]] = None,
    best_scores: Optional[Dict[str, float]] = None,
    message: Optional[str] = None,
) -> None:
    if epoch is None:
        assert total_epochs is None, f"Expected total_epochs to be None when epoch is None, got {total_epochs}"
        msg = ""
    else:
        assert total_epochs is not None, f"Expected total_epochs to be not None when epoch is not None, got {total_epochs}"
        msg = print_epoch(epoch, total_epochs, mute=True)

    if loss_info is not None:
        msg += "\n" if len(msg) > 0 else ""
        msg += print_train_result(loss_info, mute=True)

    if curr_scores is not None:
        assert best_scores is not None, f"Expected best_scores to be not None when curr_scores is not None, got {best_scores}"
        msg += "\n" if len(msg) > 0 else ""
        msg += print_eval_result(curr_scores, best_scores, mute=True)

    msg += message if message is not None else ""

    logger.info(msg)