Spaces:
Runtime error
Runtime error
# Code modified from https://github.com/cvlab-stonybrook/DM-Count/blob/master/losses/bregman_pytorch.py | |
import torch | |
from torch import Tensor | |
from torch.cuda.amp import autocast | |
from typing import Union, Tuple, Dict | |
M_EPS = 1e-16 | |
# avoid numerical instability | |
def sinkhorn( | |
a: Tensor, | |
b: Tensor, | |
C: Tensor, | |
reg: float = 1e-1, | |
maxIter: int = 1000, | |
stopThr: float = 1e-9, | |
verbose: bool = False, | |
log: bool = True, | |
eval_freq: int = 10, | |
print_freq: int = 200, | |
) -> Union[Tensor, Tuple[Tensor, Dict[str, Tensor]]]: | |
""" | |
Solve the entropic regularization optimal transport | |
The input should be PyTorch tensors | |
The function solves the following optimization problem: | |
.. math:: | |
\gamma = arg\min_\gamma <\gamma,C>_F + reg\cdot\Omega(\gamma) | |
s.t. \gamma 1 = a | |
\gamma^T 1= b | |
\gamma\geq 0 | |
where : | |
- C is the (ns,nt) metric cost matrix | |
- :math:`\Omega` is the entropic regularization term :math:`\Omega(\gamma)=\sum_{i,j} \gamma_{i,j}\log(\gamma_{i,j})` | |
- a and b are target and source measures (sum to 1) | |
The algorithm used for solving the problem is the Sinkhorn-Knopp matrix scaling algorithm as proposed in [1]. | |
Parameters | |
---------- | |
a : torch.tensor (na,) | |
samples measure in the target domain | |
b : torch.tensor (nb,) | |
samples in the source domain | |
C : torch.tensor (na,nb) | |
loss matrix | |
reg : float | |
Regularization term > 0 | |
maxIter : int, optional | |
Max number of iterations | |
stopThr : float, optional | |
Stop threshol on error ( > 0 ) | |
verbose : bool, optional | |
Print information along iterations | |
log : bool, optional | |
record log if True | |
Returns | |
------- | |
gamma : (na x nb) torch.tensor | |
Optimal transportation matrix for the given parameters | |
log : dict | |
log dictionary return only if log==True in parameters | |
References | |
---------- | |
[1] M. Cuturi, Sinkhorn Distances : Lightspeed Computation of Optimal Transport, Advances in Neural Information Processing Systems (NIPS) 26, 2013 | |
See Also | |
-------- | |
""" | |
device = a.device | |
na, nb = C.shape | |
# a = a.view(-1, 1) | |
# b = b.view(-1, 1) | |
assert na >= 1 and nb >= 1, f"C needs to be 2d. Found C.shape = {C.shape}" | |
assert na == a.shape[0] and nb == b.shape[0], f"Shape of a ({a.shape}) or b ({b.shape}) does not match that of C ({C.shape})" | |
assert reg > 0, f"reg should be greater than 0. Found reg = {reg}" | |
assert a.min() >= 0. and b.min() >= 0., f"Elements in a and b should be nonnegative. Found a.min() = {a.min()}, b.min() = {b.min()}" | |
if log: | |
log = {"err": []} | |
u = torch.ones((na), dtype=a.dtype).to(device) / na | |
v = torch.ones((nb), dtype=b.dtype).to(device) / nb | |
K = torch.empty(C.shape, dtype=C.dtype).to(device) | |
torch.div(C, -reg, out=K) | |
torch.exp(K, out=K) | |
b_hat = torch.empty(b.shape, dtype=C.dtype).to(device) | |
it = 1 | |
err = 1 | |
# allocate memory beforehand | |
KTu = torch.empty(v.shape, dtype=v.dtype).to(device) | |
Kv = torch.empty(u.shape, dtype=u.dtype).to(device) | |
while (err > stopThr and it <= maxIter): | |
upre, vpre = u, v | |
# torch.matmul(u, K, out=KTu) | |
KTu = torch.matmul(u.view(1, -1), K).view(-1) | |
v = torch.div(b, KTu + M_EPS) | |
# torch.matmul(K, v, out=Kv) | |
Kv = torch.matmul(K, v.view(-1, 1)).view(-1) | |
u = torch.div(a, Kv + M_EPS) | |
if torch.any(torch.isnan(u)) or torch.any(torch.isnan(v)) or \ | |
torch.any(torch.isinf(u)) or torch.any(torch.isinf(v)): | |
print("Warning: numerical errors at iteration", it) | |
u, v = upre, vpre | |
break | |
if log and it % eval_freq == 0: | |
# we can speed up the process by checking for the error only all | |
# the eval_freq iterations | |
# below is equivalent to: | |
# b_hat = torch.sum(u.reshape(-1, 1) * K * v.reshape(1, -1), 0) | |
# but with more memory efficient | |
b_hat = (torch.matmul(u.view(1, -1), K) * v.view(1, -1)).view(-1) | |
err = (b - b_hat).pow(2).sum().item() | |
# err = (b - b_hat).abs().sum().item() | |
log["err"].append(err) | |
if verbose and it % print_freq == 0: | |
print("iteration {:5d}, constraint error {:5e}".format(it, err)) | |
it += 1 | |
if log: | |
log["u"] = u | |
log["v"] = v | |
log["alpha"] = reg * torch.log(u + M_EPS) | |
log["beta"] = reg * torch.log(v + M_EPS) | |
# transport plan | |
P = u.reshape(-1, 1) * K * v.reshape(1, -1) | |
if log: | |
return P, log | |
else: | |
return P | |