|
from pydantic import BaseModel, Field |
|
from typing import Optional, List, Dict, Any |
|
|
|
class ChatRequest(BaseModel): |
|
"""Request model for chat endpoint""" |
|
user_id: str = Field(..., description="User ID from Telegram") |
|
question: str = Field(..., description="User's question") |
|
include_history: bool = Field(True, description="Whether to include user history in prompt") |
|
use_rag: bool = Field(True, description="Whether to use RAG") |
|
|
|
|
|
similarity_top_k: int = Field(6, description="Number of top similar documents to return (after filtering)") |
|
limit_k: int = Field(10, description="Maximum number of documents to retrieve from vector store") |
|
similarity_metric: str = Field("cosine", description="Similarity metric to use (cosine, dotproduct, euclidean)") |
|
similarity_threshold: float = Field(0.75, description="Threshold for vector similarity (0-1)") |
|
|
|
|
|
session_id: Optional[str] = Field(None, description="Session ID for tracking conversations") |
|
first_name: Optional[str] = Field(None, description="User's first name") |
|
last_name: Optional[str] = Field(None, description="User's last name") |
|
username: Optional[str] = Field(None, description="User's username") |
|
|
|
class SourceDocument(BaseModel): |
|
"""Model for source documents""" |
|
text: str = Field(..., description="Text content of the document") |
|
source: Optional[str] = Field(None, description="Source of the document") |
|
score: Optional[float] = Field(None, description="Raw similarity score of the document") |
|
normalized_score: Optional[float] = Field(None, description="Normalized similarity score (0-1)") |
|
metadata: Optional[Dict[str, Any]] = Field(None, description="Metadata of the document") |
|
|
|
class ChatResponse(BaseModel): |
|
"""Response model for chat endpoint""" |
|
answer: str = Field(..., description="Generated answer") |
|
processing_time: float = Field(..., description="Processing time in seconds") |
|
|
|
class ChatResponseInternal(BaseModel): |
|
"""Internal model for chat response with sources - used only for logging""" |
|
answer: str |
|
sources: Optional[List[SourceDocument]] = Field(None, description="Source documents used for generating answer") |
|
processing_time: Optional[float] = None |
|
|
|
class EmbeddingRequest(BaseModel): |
|
"""Request model for embedding endpoint""" |
|
text: str = Field(..., description="Text to generate embedding for") |
|
|
|
class EmbeddingResponse(BaseModel): |
|
"""Response model for embedding endpoint""" |
|
embedding: List[float] = Field(..., description="Generated embedding") |
|
text: str = Field(..., description="Text that was embedded") |
|
model: str = Field(..., description="Model used for embedding") |
|
|
|
class HealthResponse(BaseModel): |
|
"""Response model for health endpoint""" |
|
status: str |
|
services: Dict[str, bool] |
|
timestamp: str |
|
|
|
class UserMessageModel(BaseModel): |
|
"""Model for user messages sent to the RAG API""" |
|
user_id: str = Field(..., description="User ID from the client application") |
|
session_id: str = Field(..., description="Session ID for tracking the conversation") |
|
message: str = Field(..., description="User's message/question") |
|
|
|
|
|
similarity_top_k: Optional[int] = Field(None, description="Number of top similar documents to return (after filtering)") |
|
limit_k: Optional[int] = Field(None, description="Maximum number of documents to retrieve from vector store") |
|
similarity_metric: Optional[str] = Field(None, description="Similarity metric to use (cosine, dotproduct, euclidean)") |
|
similarity_threshold: Optional[float] = Field(None, description="Threshold for vector similarity (0-1)") |