Pix-Agent / app /api /pdf_routes.py
ManTea's picture
QA to PROD
0e5b8f8
import os
import shutil
import uuid
import sys
import traceback
from fastapi import APIRouter, UploadFile, File, Form, HTTPException, BackgroundTasks, Depends, Query
from fastapi.responses import JSONResponse
from typing import Optional, List, Dict, Any
from sqlalchemy.orm import Session
import os.path
import logging
import tempfile
import time
import json
from datetime import datetime
from app.utils.pdf_processor import PDFProcessor
from app.models.pdf_models import PDFResponse, DeleteDocumentRequest, DocumentsListResponse
from app.database.postgresql import get_db
from app.database.models import VectorDatabase, Document, VectorStatus, ApiKey, DocumentContent
from app.api.pdf_websocket import (
send_pdf_upload_started,
send_pdf_upload_progress,
send_pdf_upload_completed,
send_pdf_upload_failed,
send_pdf_delete_started,
send_pdf_delete_completed,
send_pdf_delete_failed
)
# Setup logger
logger = logging.getLogger(__name__)
# Add a stream handler for PDF debug logging
pdf_debug_logger = logging.getLogger("pdf_debug_api")
pdf_debug_logger.setLevel(logging.DEBUG)
# Check if a stream handler already exists, add one if not
if not any(isinstance(h, logging.StreamHandler) for h in pdf_debug_logger.handlers):
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(logging.INFO)
pdf_debug_logger.addHandler(stream_handler)
# Initialize router
router = APIRouter(
prefix="/pdf",
tags=["PDF Processing"],
)
# Constants - Use system temp directory instead of creating our own
TEMP_UPLOAD_DIR = tempfile.gettempdir()
STORAGE_DIR = tempfile.gettempdir() # Also use system temp for storage
USE_MOCK_MODE = False # Disabled - using real database with improved connection handling
logger.info(f"PDF API starting with USE_MOCK_MODE={USE_MOCK_MODE}")
# Helper function to log with timestamp
def log_with_timestamp(message: str, level: str = "info", error: Exception = None):
"""Add timestamps to log messages and log to the PDF debug logger if available"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
full_message = f"{timestamp} - {message}"
if level.lower() == "debug":
logger.debug(full_message)
pdf_debug_logger.debug(full_message)
elif level.lower() == "info":
logger.info(full_message)
pdf_debug_logger.info(full_message)
elif level.lower() == "warning":
logger.warning(full_message)
pdf_debug_logger.warning(full_message)
elif level.lower() == "error":
logger.error(full_message)
pdf_debug_logger.error(full_message)
if error:
logger.error(traceback.format_exc())
pdf_debug_logger.error(traceback.format_exc())
else:
logger.info(full_message)
pdf_debug_logger.info(full_message)
# Helper function to log debug information during upload
def log_upload_debug(correlation_id: str, message: str, error: Exception = None):
"""Log detailed debug information about PDF uploads"""
pdf_debug_logger.debug(f"[{correlation_id}] {message}")
if error:
pdf_debug_logger.error(f"[{correlation_id}] Error: {str(error)}")
pdf_debug_logger.error(traceback.format_exc())
# Helper function to send progress updates
async def send_progress_update(user_id, file_id, step, progress=0.0, message=""):
"""Send PDF processing progress updates via WebSocket"""
try:
await send_pdf_upload_progress(user_id, file_id, step, progress, message)
except Exception as e:
logger.error(f"Error sending progress update: {e}")
logger.error(traceback.format_exc())
# Function with fixed indentation for the troublesome parts
async def handle_pdf_processing_result(result, correlation_id, user_id, file_id, filename, document, vector_status,
vector_database_id, temp_file_path, db, is_pdf):
"""Process the result of PDF processing and update database records"""
# If successful, move file to permanent storage
if result.get('success'):
try:
storage_path = os.path.join(STORAGE_DIR, f"{file_id}{'.pdf' if is_pdf else '.txt'}")
shutil.move(temp_file_path, storage_path)
log_upload_debug(correlation_id, f"Moved file to storage at {storage_path}")
except Exception as move_error:
log_upload_debug(correlation_id, f"Error moving file to storage: {move_error}", move_error)
# Update status in PostgreSQL
if vector_database_id and document and vector_status:
try:
log_upload_debug(correlation_id, f"Updating vector status to 'completed' for document ID {document.id}")
# Update the vector status with the result document_id (important for later deletion)
result_document_id = result.get('document_id')
vector_status.status = "completed"
vector_status.embedded_at = datetime.now()
# Critical: Store the correct vector ID for future deletion
# This can be either the original file_id or the result_document_id
if result_document_id and result_document_id != file_id:
# If Pinecone returned a specific document_id, use that
vector_status.vector_id = result_document_id
log_upload_debug(correlation_id, f"Updated vector_id to {result_document_id} (from result)")
elif file_id:
# Make sure file_id is stored as the vector_id
vector_status.vector_id = file_id
log_upload_debug(correlation_id, f"Updated vector_id to {file_id} (from file_id)")
# Also ensure we store some backup identifiers in case the primary one fails
# Store the document name as a secondary identifier
vector_status.document_name = document.name
log_upload_debug(correlation_id, f"Stored document_name '{document.name}' in vector status for backup")
# Mark document as embedded
document.is_embedded = True
db.commit()
log_upload_debug(correlation_id, f"Database status updated successfully")
except Exception as db_error:
log_upload_debug(correlation_id, f"Error updating database status: {db_error}", db_error)
# Send completion notification via WebSocket
if user_id:
try:
await send_pdf_upload_completed(
user_id,
file_id,
filename,
result.get('chunks_processed', 0)
)
log_upload_debug(correlation_id, f"Sent upload completed notification to user {user_id}")
except Exception as ws_error:
log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
# Add document information to the result
if document:
result["document_database_id"] = document.id
else:
log_upload_debug(correlation_id, f"PDF processing failed: {result.get('error', 'Unknown error')}")
# Update error status in PostgreSQL
if vector_database_id and document and vector_status:
try:
log_upload_debug(correlation_id, f"Updating vector status to 'failed' for document ID {document.id}")
vector_status.status = "failed"
vector_status.error_message = result.get('error', 'Unknown error')
db.commit()
log_upload_debug(correlation_id, f"Database status updated for failure")
except Exception as db_error:
log_upload_debug(correlation_id, f"Error updating database status for failure: {db_error}", db_error)
# Send failure notification via WebSocket
if user_id:
try:
await send_pdf_upload_failed(
user_id,
file_id,
filename,
result.get('error', 'Unknown error')
)
log_upload_debug(correlation_id, f"Sent upload failed notification to user {user_id}")
except Exception as ws_error:
log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
# Cleanup: delete temporary file if it still exists
if temp_file_path and os.path.exists(temp_file_path):
try:
os.remove(temp_file_path)
log_upload_debug(correlation_id, f"Removed temporary file {temp_file_path}")
except Exception as cleanup_error:
log_upload_debug(correlation_id, f"Error removing temporary file: {cleanup_error}", cleanup_error)
log_upload_debug(correlation_id, f"Upload request completed with success={result.get('success', False)}")
return result
# Endpoint for uploading and processing PDFs
@router.post("/upload", response_model=PDFResponse)
async def upload_pdf(
file: UploadFile = File(...),
namespace: str = Form("Default"),
index_name: str = Form("testbot768"),
title: Optional[str] = Form(None),
description: Optional[str] = Form(None),
user_id: Optional[str] = Form(None),
vector_database_id: Optional[int] = Form(None),
content_type: Optional[str] = Form(None), # Add content_type parameter
background_tasks: BackgroundTasks = None,
db: Session = Depends(get_db)
):
"""
Upload and process PDF file to create embeddings and store in Pinecone
- **file**: PDF file to process
- **namespace**: Namespace in Pinecone to store embeddings (default: "Default")
- **index_name**: Name of Pinecone index (default: "testbot768")
- **title**: Document title (optional)
- **description**: Document description (optional)
- **user_id**: User ID for WebSocket status updates
- **vector_database_id**: ID of vector database in PostgreSQL (optional)
- **content_type**: Content type of the file (optional)
Note: Mock mode has been permanently removed and the system always operates in real mode
"""
# Generate request ID for tracking
correlation_id = str(uuid.uuid4())[:8]
logger.info(f"[{correlation_id}] PDF upload request received: ns={namespace}, index={index_name}, user={user_id}")
log_upload_debug(correlation_id, f"Upload request: vector_db_id={vector_database_id}")
# Variables that might need cleanup in case of error
temp_file_path = None
document = None
vector_status = None
try:
# Check file type - accept both PDF and plaintext for testing
is_pdf = file.filename.lower().endswith('.pdf')
is_text = file.filename.lower().endswith(('.txt', '.md', '.html'))
log_upload_debug(correlation_id, f"File type check: is_pdf={is_pdf}, is_text={is_text}, filename={file.filename}")
if not (is_pdf or is_text):
log_upload_debug(correlation_id, f"Rejecting non-PDF file: {file.filename}")
raise HTTPException(status_code=400, detail="Only PDF files are accepted")
# If vector_database_id provided, get info from PostgreSQL
api_key = None
vector_db = None
if vector_database_id:
log_upload_debug(correlation_id, f"Looking up vector database ID {vector_database_id}")
vector_db = db.query(VectorDatabase).filter(
VectorDatabase.id == vector_database_id,
VectorDatabase.status == "active"
).first()
if not vector_db:
log_upload_debug(correlation_id, f"Vector database {vector_database_id} not found or inactive")
raise HTTPException(status_code=404, detail="Vector database not found or inactive")
log_upload_debug(correlation_id, f"Found vector database: id={vector_db.id}, name={vector_db.name}, index={vector_db.pinecone_index}")
# Use vector database information
# Try to get API key from relationship
log_upload_debug(correlation_id, f"Trying to get API key for vector database {vector_database_id}")
# Log available attributes
vector_db_attrs = dir(vector_db)
log_upload_debug(correlation_id, f"Vector DB attributes: {vector_db_attrs}")
if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
log_upload_debug(correlation_id, f"Using API key from relationship for vector database ID {vector_database_id}")
log_upload_debug(correlation_id, f"api_key_ref type: {type(vector_db.api_key_ref)}")
log_upload_debug(correlation_id, f"api_key_ref attributes: {dir(vector_db.api_key_ref)}")
if hasattr(vector_db.api_key_ref, 'key_value'):
api_key = vector_db.api_key_ref.key_value
# Log first few chars of API key for debugging
key_prefix = api_key[:4] + "..." if api_key and len(api_key) > 4 else "invalid/empty"
log_upload_debug(correlation_id, f"API key retrieved: {key_prefix}, length: {len(api_key) if api_key else 0}")
logger.info(f"[{correlation_id}] Using API key from relationship for vector database ID {vector_database_id}")
else:
log_upload_debug(correlation_id, f"api_key_ref does not have key_value attribute")
elif hasattr(vector_db, 'api_key') and vector_db.api_key:
# Fallback to direct api_key if needed (deprecated)
api_key = vector_db.api_key
key_prefix = api_key[:4] + "..." if api_key and len(api_key) > 4 else "invalid/empty"
log_upload_debug(correlation_id, f"Using deprecated direct api_key: {key_prefix}")
logger.warning(f"[{correlation_id}] Using deprecated direct api_key for vector database ID {vector_database_id}")
else:
log_upload_debug(correlation_id, "No API key found in vector database")
# Use index from vector database
index_name = vector_db.pinecone_index
log_upload_debug(correlation_id, f"Using index name '{index_name}' from vector database")
logger.info(f"[{correlation_id}] Using index name '{index_name}' from vector database")
# Generate file_id and save temporary file
file_id = str(uuid.uuid4())
temp_file_path = os.path.join(TEMP_UPLOAD_DIR, f"{file_id}{'.pdf' if is_pdf else '.txt'}")
log_upload_debug(correlation_id, f"Generated file_id: {file_id}, temp path: {temp_file_path}")
# Send notification of upload start via WebSocket if user_id provided
if user_id:
try:
await send_pdf_upload_started(user_id, file.filename, file_id)
log_upload_debug(correlation_id, f"Sent upload started notification to user {user_id}")
except Exception as ws_error:
log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
# Save file
log_upload_debug(correlation_id, f"Reading file content")
file_content = await file.read()
log_upload_debug(correlation_id, f"File size: {len(file_content)} bytes")
with open(temp_file_path, "wb") as buffer:
buffer.write(file_content)
log_upload_debug(correlation_id, f"File saved to {temp_file_path}")
# Create metadata
metadata = {
"filename": file.filename,
"content_type": file.content_type
}
# Use provided content_type or fallback to file.content_type
actual_content_type = content_type or file.content_type
log_upload_debug(correlation_id, f"Using content_type: {actual_content_type}")
if not actual_content_type:
# Fallback content type based on file extension
if is_pdf:
actual_content_type = "application/pdf"
elif is_text:
actual_content_type = "text/plain"
else:
actual_content_type = "application/octet-stream"
log_upload_debug(correlation_id, f"No content_type provided, using fallback: {actual_content_type}")
metadata["content_type"] = actual_content_type
# Use provided title or filename as document name
document_name = title or file.filename
# Verify document name is unique within this vector database
if vector_database_id:
# Check if a document with this name already exists in this vector database
existing_doc = db.query(Document).filter(
Document.name == document_name,
Document.vector_database_id == vector_database_id
).first()
if existing_doc:
# Make the name unique by appending timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
base_name, extension = os.path.splitext(document_name)
document_name = f"{base_name}_{timestamp}{extension}"
log_upload_debug(correlation_id, f"Document name already exists, using unique name: {document_name}")
metadata["title"] = document_name
if description:
metadata["description"] = description
# Send progress update via WebSocket
if user_id:
try:
await send_progress_update(
user_id,
file_id,
"file_preparation",
0.2,
"File saved, preparing for processing"
)
log_upload_debug(correlation_id, f"Sent file preparation progress to user {user_id}")
except Exception as ws_error:
log_upload_debug(correlation_id, f"Error sending progress update: {ws_error}", ws_error)
# Create document record - do this regardless of mock mode
document = None
vector_status = None
if vector_database_id and vector_db:
log_upload_debug(correlation_id, f"Creating PostgreSQL records for document with vector_database_id={vector_database_id}")
# Create document record without file content
try:
document = Document(
name=document_name, # Use the (potentially) modified document name
file_type="pdf" if is_pdf else "text",
content_type=actual_content_type, # Use the actual_content_type here
size=len(file_content),
is_embedded=False,
vector_database_id=vector_database_id
)
db.add(document)
db.commit()
db.refresh(document)
log_upload_debug(correlation_id, f"Created document record: id={document.id}")
except Exception as doc_error:
log_upload_debug(correlation_id, f"Error creating document record: {doc_error}", doc_error)
raise
# Create document content record to store binary data separately
try:
document_content = DocumentContent(
document_id=document.id,
file_content=file_content
)
db.add(document_content)
db.commit()
log_upload_debug(correlation_id, f"Created document content record for document ID {document.id}")
except Exception as content_error:
log_upload_debug(correlation_id, f"Error creating document content: {content_error}", content_error)
raise
# Create vector status record - store file_id as the vector_id for deletion later
try:
vector_status = VectorStatus(
document_id=document.id,
vector_database_id=vector_database_id,
status="pending",
vector_id=file_id # Store the document UUID as vector_id for later deletion
)
db.add(vector_status)
db.commit()
log_upload_debug(correlation_id, f"Created vector status record for document ID {document.id} with vector_id={file_id}")
except Exception as status_error:
log_upload_debug(correlation_id, f"Error creating vector status: {status_error}", status_error)
raise
logger.info(f"[{correlation_id}] Created document ID {document.id} and vector status in PostgreSQL")
# Initialize PDF processor with correct parameters
log_upload_debug(correlation_id, f"Initializing PDFProcessor: index={index_name}, vector_db_id={vector_database_id}")
processor = PDFProcessor(
index_name=index_name,
namespace=namespace,
api_key=api_key,
vector_db_id=vector_database_id,
correlation_id=correlation_id
)
# Send embedding start notification via WebSocket
if user_id:
try:
await send_progress_update(
user_id,
file_id,
"embedding_start",
0.4,
"Starting to process PDF and create embeddings"
)
log_upload_debug(correlation_id, f"Sent embedding start notification to user {user_id}")
except Exception as ws_error:
log_upload_debug(correlation_id, f"Error sending WebSocket notification: {ws_error}", ws_error)
# Process PDF and create embeddings with progress callback
log_upload_debug(correlation_id, f"Processing PDF with file_path={temp_file_path}, document_id={file_id}")
result = await processor.process_pdf(
file_path=temp_file_path,
document_id=file_id, # Use UUID as document_id for Pinecone
metadata=metadata,
progress_callback=send_progress_update if user_id else None
)
log_upload_debug(correlation_id, f"PDF processing result: {result}")
# Handle PDF processing result
return await handle_pdf_processing_result(result, correlation_id, user_id, file_id, file.filename, document, vector_status,
vector_database_id, temp_file_path, db, is_pdf)
except Exception as e:
log_upload_debug(correlation_id, f"Error in upload_pdf: {str(e)}", e)
logger.exception(f"[{correlation_id}] Error in upload_pdf: {str(e)}")
# Cleanup on error
if os.path.exists(temp_file_path):
try:
os.remove(temp_file_path)
log_upload_debug(correlation_id, f"Cleaned up temp file after error: {temp_file_path}")
except Exception as cleanup_error:
log_upload_debug(correlation_id, f"Error cleaning up temporary file: {cleanup_error}", cleanup_error)
# Update error status in PostgreSQL
if vector_database_id and vector_status:
try:
vector_status.status = "failed"
vector_status.error_message = str(e)
db.commit()
log_upload_debug(correlation_id, f"Updated database with error status")
except Exception as db_error:
log_upload_debug(correlation_id, f"Error updating database with error status: {db_error}", db_error)
# Send failure notification via WebSocket
if user_id and file_id:
try:
await send_pdf_upload_failed(
user_id,
file_id,
file.filename,
str(e)
)
log_upload_debug(correlation_id, f"Sent failure notification for exception")
except Exception as ws_error:
log_upload_debug(correlation_id, f"Error sending WebSocket notification for failure: {ws_error}", ws_error)
log_upload_debug(correlation_id, f"Upload request failed with exception: {str(e)}")
return PDFResponse(
success=False,
error=str(e)
)
# Endpoint xóa tài liệu
@router.delete("/namespace", response_model=PDFResponse)
async def delete_namespace(
namespace: str = "Default",
index_name: str = "testbot768",
vector_database_id: Optional[int] = None,
user_id: Optional[str] = None,
db: Session = Depends(get_db)
):
"""
Xóa toàn bộ embeddings trong một namespace từ Pinecone (tương ứng xoá namespace)
- **namespace**: Namespace trong Pinecone (mặc định: "Default")
- **index_name**: Tên index Pinecone (mặc định: "testbot768")
- **vector_database_id**: ID của vector database trong PostgreSQL (nếu có)
- **user_id**: ID của người dùng để cập nhật trạng thái qua WebSocket
"""
logger.info(f"Delete namespace request: namespace={namespace}, index={index_name}, vector_db_id={vector_database_id}")
try:
# Nếu có vector_database_id, lấy thông tin từ PostgreSQL
api_key = None
vector_db = None
if vector_database_id:
vector_db = db.query(VectorDatabase).filter(
VectorDatabase.id == vector_database_id,
VectorDatabase.status == "active"
).first()
if not vector_db:
return PDFResponse(
success=False,
error=f"Vector database with ID {vector_database_id} not found or inactive"
)
# Use index from vector database
index_name = vector_db.pinecone_index
# Get API key
if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
api_key = vector_db.api_key_ref.key_value
elif hasattr(vector_db, 'api_key') and vector_db.api_key:
api_key = vector_db.api_key
# Use namespace based on vector database ID
namespace = f"vdb-{vector_database_id}" if vector_database_id else namespace
logger.info(f"Using namespace '{namespace}' based on vector database ID")
# Gửi thông báo bắt đầu xóa qua WebSocket
if user_id:
await send_pdf_delete_started(user_id, namespace)
processor = PDFProcessor(
index_name=index_name,
namespace=namespace,
api_key=api_key,
vector_db_id=vector_database_id
)
result = await processor.delete_namespace()
# If successful and vector_database_id, update PostgreSQL to reflect the deletion
if result.get('success') and vector_database_id:
try:
# Update vector statuses for this database
affected_count = db.query(VectorStatus).filter(
VectorStatus.vector_database_id == vector_database_id,
VectorStatus.status != "deleted"
).update({"status": "deleted", "updated_at": datetime.now()})
# Update document embedding status
db.query(Document).filter(
Document.vector_database_id == vector_database_id,
Document.is_embedded == True
).update({"is_embedded": False})
db.commit()
logger.info(f"Updated {affected_count} vector statuses to 'deleted'")
# Include this info in the result
result["updated_records"] = affected_count
except Exception as db_error:
logger.error(f"Error updating PostgreSQL records after namespace deletion: {db_error}")
result["postgresql_update_error"] = str(db_error)
# Gửi thông báo kết quả qua WebSocket
if user_id:
if result.get('success'):
await send_pdf_delete_completed(user_id, namespace)
else:
await send_pdf_delete_failed(user_id, namespace, result.get('error', 'Unknown error'))
return result
except Exception as e:
logger.exception(f"Error in delete_namespace: {str(e)}")
# Gửi thông báo lỗi qua WebSocket
if user_id:
await send_pdf_delete_failed(user_id, namespace, str(e))
return PDFResponse(
success=False,
error=str(e)
)
# Endpoint lấy danh sách tài liệu
@router.get("/documents", response_model=DocumentsListResponse)
async def get_documents(
namespace: str = "Default",
index_name: str = "testbot768",
vector_database_id: Optional[int] = None,
db: Session = Depends(get_db)
):
"""
Lấy thông tin về tất cả tài liệu đã được embed
- **namespace**: Namespace trong Pinecone (mặc định: "Default")
- **index_name**: Tên index Pinecone (mặc định: "testbot768")
- **vector_database_id**: ID của vector database trong PostgreSQL (nếu có)
"""
logger.info(f"Get documents request: namespace={namespace}, index={index_name}, vector_db_id={vector_database_id}")
try:
# Nếu có vector_database_id, lấy thông tin từ PostgreSQL
api_key = None
vector_db = None
if vector_database_id:
vector_db = db.query(VectorDatabase).filter(
VectorDatabase.id == vector_database_id,
VectorDatabase.status == "active"
).first()
if not vector_db:
return DocumentsListResponse(
success=False,
error=f"Vector database with ID {vector_database_id} not found or inactive"
)
# Use index from vector database
index_name = vector_db.pinecone_index
# Get API key
if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
api_key = vector_db.api_key_ref.key_value
elif hasattr(vector_db, 'api_key') and vector_db.api_key:
api_key = vector_db.api_key
# Use namespace based on vector database ID
namespace = f"vdb-{vector_database_id}" if vector_database_id else namespace
logger.info(f"Using namespace '{namespace}' based on vector database ID")
# Khởi tạo PDF processor
processor = PDFProcessor(
index_name=index_name,
namespace=namespace,
api_key=api_key,
vector_db_id=vector_database_id
)
# Lấy danh sách documents từ Pinecone
pinecone_result = await processor.list_documents()
# If vector_database_id is provided, also fetch from PostgreSQL
if vector_database_id:
try:
# Get all successfully embedded documents for this vector database
documents = db.query(Document).join(
VectorStatus, Document.id == VectorStatus.document_id
).filter(
Document.vector_database_id == vector_database_id,
Document.is_embedded == True,
VectorStatus.status == "completed"
).all()
# Add document info to the result
if documents:
pinecone_result["postgresql_documents"] = [
{
"id": doc.id,
"name": doc.name,
"file_type": doc.file_type,
"content_type": doc.content_type,
"created_at": doc.created_at.isoformat() if doc.created_at else None
}
for doc in documents
]
pinecone_result["postgresql_document_count"] = len(documents)
except Exception as db_error:
logger.error(f"Error fetching PostgreSQL documents: {db_error}")
pinecone_result["postgresql_error"] = str(db_error)
return pinecone_result
except Exception as e:
logger.exception(f"Error in get_documents: {str(e)}")
return DocumentsListResponse(
success=False,
error=str(e)
)
# Health check endpoint for PDF API
@router.get("/health")
async def health_check():
return {
"status": "healthy",
"version": "1.0.0",
"message": "PDF API is running"
}
# Document deletion endpoint
@router.delete("/document", response_model=PDFResponse)
async def delete_document(
document_id: str,
namespace: str = "Default",
index_name: str = "testbot768",
vector_database_id: Optional[int] = None,
user_id: Optional[str] = None,
db: Session = Depends(get_db)
):
"""
Delete vectors for a specific document from the vector database
This endpoint can be called in two ways:
1. With the PostgreSQL document ID - will look up the actual vector_id first
2. With the actual vector_id directly - when called from the PostgreSQL document deletion endpoint
- **document_id**: ID of the document to delete (can be PostgreSQL document ID or Pinecone vector_id)
- **namespace**: Namespace in the vector database (default: "Default")
- **index_name**: Name of the vector index (default: "testbot768")
- **vector_database_id**: ID of vector database in PostgreSQL (optional)
- **user_id**: User ID for WebSocket status updates (optional)
"""
logger.info(f"Delete document request: document_id={document_id}, namespace={namespace}, index={index_name}, vector_db_id={vector_database_id}")
try:
# If vector_database_id is provided, get info from PostgreSQL
api_key = None
vector_db = None
pinecone_document_id = document_id # Default to the provided document_id
document_to_delete = None
vector_status_to_update = None
document_found = False # Flag to track if document was found
vector_id_found = False # Flag to track if a valid vector ID was found
if vector_database_id:
vector_db = db.query(VectorDatabase).filter(
VectorDatabase.id == vector_database_id,
VectorDatabase.status == "active"
).first()
if not vector_db:
return PDFResponse(
success=False,
error=f"Vector database with ID {vector_database_id} not found or inactive"
)
# Use index from vector database
index_name = vector_db.pinecone_index
# Get API key
if hasattr(vector_db, 'api_key_ref') and vector_db.api_key_ref:
api_key = vector_db.api_key_ref.key_value
elif hasattr(vector_db, 'api_key') and vector_db.api_key:
api_key = vector_db.api_key
# Use namespace based on vector database ID
namespace = f"vdb-{vector_database_id}" if vector_database_id else namespace
logger.info(f"Using namespace '{namespace}' based on vector database ID")
# Check if document_id is a numeric database ID or document name
if document_id.isdigit():
# Try to find the document in PostgreSQL by its ID
db_document_id = int(document_id)
document_to_delete = db.query(Document).filter(Document.id == db_document_id).first()
if document_to_delete:
document_found = True
logger.info(f"Found document in database: id={document_to_delete.id}, name={document_to_delete.name}")
# Look for vector status to find the Pinecone vector_id
vector_status_to_update = db.query(VectorStatus).filter(
VectorStatus.document_id == document_to_delete.id,
VectorStatus.vector_database_id == vector_database_id
).first()
if vector_status_to_update and vector_status_to_update.vector_id:
pinecone_document_id = vector_status_to_update.vector_id
vector_id_found = True
logger.info(f"Using vector_id '{pinecone_document_id}' from vector status")
else:
# Fallback options if vector_id is not directly found
pinecone_document_id = document_to_delete.name
logger.info(f"Vector ID not found in status, using document name '{pinecone_document_id}' as fallback")
else:
logger.warning(f"Document with ID {db_document_id} not found in database. Using ID as is.")
else:
# Try to find document by name/title
document_to_delete = db.query(Document).filter(
Document.name == document_id,
Document.vector_database_id == vector_database_id
).first()
if document_to_delete:
document_found = True
logger.info(f"Found document by name: id={document_to_delete.id}, name={document_to_delete.name}")
# Get vector status for this document
vector_status_to_update = db.query(VectorStatus).filter(
VectorStatus.document_id == document_to_delete.id,
VectorStatus.vector_database_id == vector_database_id
).first()
if vector_status_to_update and vector_status_to_update.vector_id:
pinecone_document_id = vector_status_to_update.vector_id
vector_id_found = True
logger.info(f"Using vector_id '{pinecone_document_id}' from vector status")
# Send notification of deletion start via WebSocket if user_id provided
if user_id:
try:
await send_pdf_delete_started(user_id, pinecone_document_id)
except Exception as ws_error:
logger.error(f"Error sending WebSocket notification: {ws_error}")
# Initialize PDF processor
processor = PDFProcessor(
index_name=index_name,
namespace=namespace,
api_key=api_key,
vector_db_id=vector_database_id
)
# Delete document vectors using the pinecone_document_id and additional metadata
additional_metadata = {}
if document_to_delete:
# Add document name as title for searching
additional_metadata["document_name"] = document_to_delete.name
result = await processor.delete_document(pinecone_document_id, additional_metadata)
# Check if vectors were actually deleted or found
vectors_deleted = result.get('vectors_deleted', 0)
vectors_found = result.get('vectors_found', False)
# If no document was found in PostgreSQL and no vectors were found/deleted in Pinecone
if not document_found and not vectors_found:
result['success'] = False # Override success to false
result['error'] = f"Document ID {document_id} not found in PostgreSQL or Pinecone"
# Send notification of deletion failure via WebSocket if user_id provided
if user_id:
try:
await send_pdf_delete_failed(user_id, document_id, result['error'])
except Exception as ws_error:
logger.error(f"Error sending WebSocket notification: {ws_error}")
return result
# If successful and vector_database_id is provided, update PostgreSQL records
if result.get('success') and vector_database_id:
try:
# Update vector status if we found it earlier
if vector_status_to_update:
vector_status_to_update.status = "deleted"
db.commit()
result["postgresql_updated"] = True
logger.info(f"Updated vector status for document ID {document_to_delete.id if document_to_delete else document_id} to 'deleted'")
else:
# If we didn't find it earlier, try again with more search options
document = None
if document_id.isdigit():
# If the original document_id was numeric, use it directly
document = db.query(Document).filter(Document.id == int(document_id)).first()
if not document:
# Find document by vector ID if it exists
document = db.query(Document).join(
VectorStatus, Document.id == VectorStatus.document_id
).filter(
Document.vector_database_id == vector_database_id,
VectorStatus.vector_id == pinecone_document_id
).first()
if not document:
# Try finding by name
document = db.query(Document).filter(
Document.vector_database_id == vector_database_id,
Document.name == pinecone_document_id
).first()
if document:
# Update vector status
vector_status = db.query(VectorStatus).filter(
VectorStatus.document_id == document.id,
VectorStatus.vector_database_id == vector_database_id
).first()
if vector_status:
vector_status.status = "deleted"
db.commit()
result["postgresql_updated"] = True
logger.info(f"Updated vector status for document ID {document.id} to 'deleted'")
else:
logger.warning(f"Could not find document record for deletion confirmation. Document ID: {document_id}, Vector ID: {pinecone_document_id}")
except Exception as db_error:
logger.error(f"Error updating PostgreSQL records: {db_error}")
result["postgresql_error"] = str(db_error)
# Add information about what was found and deleted
result["document_found_in_db"] = document_found
result["vector_id_found"] = vector_id_found
result["vectors_deleted"] = vectors_deleted
# Send notification of deletion completion via WebSocket if user_id provided
if user_id:
try:
if result.get('success'):
await send_pdf_delete_completed(user_id, pinecone_document_id)
else:
await send_pdf_delete_failed(user_id, pinecone_document_id, result.get('error', 'Unknown error'))
except Exception as ws_error:
logger.error(f"Error sending WebSocket notification: {ws_error}")
return result
except Exception as e:
logger.exception(f"Error in delete_document: {str(e)}")
# Send notification of deletion failure via WebSocket if user_id provided
if user_id:
try:
await send_pdf_delete_failed(user_id, document_id, str(e))
except Exception as ws_error:
logger.error(f"Error sending WebSocket notification: {ws_error}")
return PDFResponse(
success=False,
error=str(e)
)