from pydantic import BaseModel, Field from typing import Optional, List, Dict, Any class ChatRequest(BaseModel): """Request model for chat endpoint""" user_id: str = Field(..., description="User ID from Telegram") question: str = Field(..., description="User's question") include_history: bool = Field(True, description="Whether to include user history in prompt") use_rag: bool = Field(True, description="Whether to use RAG") # Advanced retrieval parameters similarity_top_k: int = Field(6, description="Number of top similar documents to return (after filtering)") limit_k: int = Field(10, description="Maximum number of documents to retrieve from vector store") similarity_metric: str = Field("cosine", description="Similarity metric to use (cosine, dotproduct, euclidean)") similarity_threshold: float = Field(0.75, description="Threshold for vector similarity (0-1)") # User information session_id: Optional[str] = Field(None, description="Session ID for tracking conversations") first_name: Optional[str] = Field(None, description="User's first name") last_name: Optional[str] = Field(None, description="User's last name") username: Optional[str] = Field(None, description="User's username") class SourceDocument(BaseModel): """Model for source documents""" text: str = Field(..., description="Text content of the document") source: Optional[str] = Field(None, description="Source of the document") score: Optional[float] = Field(None, description="Raw similarity score of the document") normalized_score: Optional[float] = Field(None, description="Normalized similarity score (0-1)") metadata: Optional[Dict[str, Any]] = Field(None, description="Metadata of the document") class ChatResponse(BaseModel): """Response model for chat endpoint""" answer: str = Field(..., description="Generated answer") processing_time: float = Field(..., description="Processing time in seconds") class ChatResponseInternal(BaseModel): """Internal model for chat response with sources - used only for logging""" answer: str sources: Optional[List[SourceDocument]] = Field(None, description="Source documents used for generating answer") processing_time: Optional[float] = None class EmbeddingRequest(BaseModel): """Request model for embedding endpoint""" text: str = Field(..., description="Text to generate embedding for") class EmbeddingResponse(BaseModel): """Response model for embedding endpoint""" embedding: List[float] = Field(..., description="Generated embedding") text: str = Field(..., description="Text that was embedded") model: str = Field(..., description="Model used for embedding") class HealthResponse(BaseModel): """Response model for health endpoint""" status: str services: Dict[str, bool] timestamp: str class UserMessageModel(BaseModel): """Model for user messages sent to the RAG API""" user_id: str = Field(..., description="User ID from the client application") session_id: str = Field(..., description="Session ID for tracking the conversation") message: str = Field(..., description="User's message/question") # Advanced retrieval parameters (optional) similarity_top_k: Optional[int] = Field(None, description="Number of top similar documents to return (after filtering)") limit_k: Optional[int] = Field(None, description="Maximum number of documents to retrieve from vector store") similarity_metric: Optional[str] = Field(None, description="Similarity metric to use (cosine, dotproduct, euclidean)") similarity_threshold: Optional[float] = Field(None, description="Threshold for vector similarity (0-1)")