PKaushik commited on
Commit
497c036
·
1 Parent(s): 06f2459

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -62
main.py DELETED
@@ -1,62 +0,0 @@
1
- import os
2
- import cv2
3
- import numpy as np
4
- import gradio as gr
5
- from PIL import Image
6
-
7
- # Define path the model
8
- PATH_PROTOTXT = os.path.join('saved_model/MobileNetSSD_deploy.prototxt')
9
- PATH_MODEL = os.path.join('saved_model/MobileNetSSD_deploy.caffemodel')
10
- # Define clasess model
11
- CLASSES = [
12
- 'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
13
- 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'hourse',
14
- 'motorbike', 'person', 'porredplant', 'sheep', 'sofa', 'train', 'tvmonitor'
15
- ]
16
-
17
- # Load model
18
- NET = cv2.dnn.readNetFromCaffe(PATH_PROTOTXT, PATH_MODEL)
19
-
20
- def person_counting(image, threshold=0.7):
21
- '''
22
- Counting the number of people in the image
23
- Args:
24
- image: image to be processed
25
- threshold: threshold to filter out the objects
26
- Returns:
27
- image: image with rectangles people detected
28
- counting: count of people
29
- '''
30
-
31
- counting = 0
32
- W, H = image.shape[1], image.shape[0]
33
- blob = cv2.dnn.blobFromImage(image, 0.007843, (W, H), 127.5)
34
- NET.setInput(blob); detections = NET.forward()
35
-
36
- for i in np.arange(0, detections.shape[2]):
37
- conf = detections[0, 0, i, 2]
38
- idx = int(detections[0, 0, i, 1])
39
- if CLASSES[idx] == 'person' and conf > threshold:
40
- box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
41
- x_min, y_min, x_max, y_max = box.astype('int')
42
- counting += 1
43
- cv2.rectangle(image, pt1=(x_min,y_min), pt2=(x_max,y_max), color=(255,0,0), thickness=1)
44
- return image, counting
45
-
46
- title = 'People counting'
47
- css = ".image-preview {height: auto !important;}"
48
-
49
- inputs = [gr.inputs.Image(source='upload'), gr.Slider(0, 1, value=0.5, label='threshold')]
50
- outputs = [gr.outputs.Image(label='image output'), gr.Number(label='counting')]
51
- examples = [[f'images/{i}', 0.5] for i in os.listdir('images')]
52
-
53
- iface = gr.Interface(
54
- title = title,
55
- fn = person_counting,
56
- inputs = inputs,
57
- outputs = outputs,
58
- examples= examples,
59
- css=css
60
- )
61
-
62
- iface.launch()