Spaces:
Build error
Build error
Delete main.py
Browse files
main.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
# Define path the model
|
8 |
-
PATH_PROTOTXT = os.path.join('saved_model/MobileNetSSD_deploy.prototxt')
|
9 |
-
PATH_MODEL = os.path.join('saved_model/MobileNetSSD_deploy.caffemodel')
|
10 |
-
# Define clasess model
|
11 |
-
CLASSES = [
|
12 |
-
'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
|
13 |
-
'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'hourse',
|
14 |
-
'motorbike', 'person', 'porredplant', 'sheep', 'sofa', 'train', 'tvmonitor'
|
15 |
-
]
|
16 |
-
|
17 |
-
# Load model
|
18 |
-
NET = cv2.dnn.readNetFromCaffe(PATH_PROTOTXT, PATH_MODEL)
|
19 |
-
|
20 |
-
def person_counting(image, threshold=0.7):
|
21 |
-
'''
|
22 |
-
Counting the number of people in the image
|
23 |
-
Args:
|
24 |
-
image: image to be processed
|
25 |
-
threshold: threshold to filter out the objects
|
26 |
-
Returns:
|
27 |
-
image: image with rectangles people detected
|
28 |
-
counting: count of people
|
29 |
-
'''
|
30 |
-
|
31 |
-
counting = 0
|
32 |
-
W, H = image.shape[1], image.shape[0]
|
33 |
-
blob = cv2.dnn.blobFromImage(image, 0.007843, (W, H), 127.5)
|
34 |
-
NET.setInput(blob); detections = NET.forward()
|
35 |
-
|
36 |
-
for i in np.arange(0, detections.shape[2]):
|
37 |
-
conf = detections[0, 0, i, 2]
|
38 |
-
idx = int(detections[0, 0, i, 1])
|
39 |
-
if CLASSES[idx] == 'person' and conf > threshold:
|
40 |
-
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
41 |
-
x_min, y_min, x_max, y_max = box.astype('int')
|
42 |
-
counting += 1
|
43 |
-
cv2.rectangle(image, pt1=(x_min,y_min), pt2=(x_max,y_max), color=(255,0,0), thickness=1)
|
44 |
-
return image, counting
|
45 |
-
|
46 |
-
title = 'People counting'
|
47 |
-
css = ".image-preview {height: auto !important;}"
|
48 |
-
|
49 |
-
inputs = [gr.inputs.Image(source='upload'), gr.Slider(0, 1, value=0.5, label='threshold')]
|
50 |
-
outputs = [gr.outputs.Image(label='image output'), gr.Number(label='counting')]
|
51 |
-
examples = [[f'images/{i}', 0.5] for i in os.listdir('images')]
|
52 |
-
|
53 |
-
iface = gr.Interface(
|
54 |
-
title = title,
|
55 |
-
fn = person_counting,
|
56 |
-
inputs = inputs,
|
57 |
-
outputs = outputs,
|
58 |
-
examples= examples,
|
59 |
-
css=css
|
60 |
-
)
|
61 |
-
|
62 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|