esg / app.py
PKaushik's picture
Create new file
ba0175e
raw
history blame
429 Bytes
import streamlit as st
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
finbert = BertForSequenceClassification.from_pretrained('yiyanghkust/finbert-esg',num_labels=4)
tokenizer = BertTokenizer.from_pretrained('yiyanghkust/finbert-esg')
nlp = pipeline("text-classification", model=finbert, tokenizer=tokenizer)
text = st.text_area('enter some text:')
if text:
results = nlp([text])
st.json(out)