PSNbst's picture
Update app.py
f916288 verified
raw
history blame
6.58 kB
import gradio as gr
import os
from PIL import Image, ImageChops, ImageFilter
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
import torch
import matplotlib.pyplot as plt
import numpy as np
from openai import OpenAI
# 初始化模型
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# 图像处理函数
def compute_difference_images(img_a, img_b):
def extract_sketch(image):
grayscale = image.convert("L")
inverted = ImageChops.invert(grayscale)
sketch = ImageChops.screen(grayscale, inverted)
return sketch
def compute_normal_map(image):
edges = image.filter(ImageFilter.FIND_EDGES)
return edges
diff_overlay = ImageChops.difference(img_a, img_b)
return {
"original_a": img_a,
"original_b": img_b,
"sketch_a": extract_sketch(img_a),
"sketch_b": extract_sketch(img_b),
"normal_a": compute_normal_map(img_a),
"normal_b": compute_normal_map(img_b),
"diff_overlay": diff_overlay
}
# 保存图像到文件
def save_images(images):
paths = []
for key, img in images.items():
path = f"{key}.png"
img.save(path)
paths.append((path, key.replace("_", " ").capitalize()))
return paths
# BLIP生成更详尽描述
def generate_detailed_caption(image):
inputs = blip_processor(image, return_tensors="pt")
caption = blip_model.generate(**inputs, max_length=128, num_beams=5, no_repeat_ngram_size=2)
return blip_processor.decode(caption[0], skip_special_tokens=True)
# 特征差异可视化
def plot_feature_differences(latent_diff):
diff_magnitude = [abs(x) for x in latent_diff[0]]
indices = range(len(diff_magnitude))
plt.figure(figsize=(8, 4))
plt.bar(indices, diff_magnitude, alpha=0.7)
plt.xlabel("Feature Index (Latent Dimension)")
plt.ylabel("Magnitude of Difference")
plt.title("Feature Differences (Bar Chart)")
bar_chart_path = "bar_chart.png"
plt.savefig(bar_chart_path)
plt.close()
plt.figure(figsize=(6, 6))
plt.pie(diff_magnitude[:10], labels=[f"Feature {i}" for i in range(10)], autopct="%1.1f%%", startangle=140)
plt.title("Top 10 Feature Differences (Pie Chart)")
pie_chart_path = "pie_chart.png"
plt.savefig(pie_chart_path)
plt.close()
return bar_chart_path, pie_chart_path
# 生成详细分析
def generate_text_analysis(api_key, api_type, caption_a, caption_b):
if api_type == "DeepSeek":
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
else:
client = OpenAI(api_key=api_key)
response = client.chat.completions.create(
model="gpt-4" if api_type == "GPT" else "deepseek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
]
)
# 修复: 正确访问返回值
return response.choices[0].message.content.strip()
# 分析函数
def analyze_images(img_a, img_b, api_key, api_type):
images_diff = compute_difference_images(img_a, img_b)
saved_images = save_images(images_diff)
caption_a = generate_detailed_caption(img_a)
caption_b = generate_detailed_caption(img_b)
inputs = clip_processor(images=img_a, return_tensors="pt")
features_a = clip_model.get_image_features(**inputs).detach().numpy()
inputs = clip_processor(images=img_b, return_tensors="pt")
features_b = clip_model.get_image_features(**inputs).detach().numpy()
latent_diff = np.abs(features_a - features_b).tolist()
bar_chart, pie_chart = plot_feature_differences(latent_diff)
text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)
return {
"saved_images": saved_images,
"caption_a": caption_a,
"caption_b": caption_b,
"text_analysis": text_analysis,
"bar_chart": bar_chart,
"pie_chart": pie_chart
}
# 批量分析
def batch_analyze(images_a, images_b, api_key, api_type):
num_pairs = min(len(images_a), len(images_b))
results = []
for i in range(num_pairs):
result = analyze_images(images_a[i], images_b[i], api_key, api_type)
results.append({
"pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
**result
})
return results
# Gradio界面
with gr.Blocks() as demo:
gr.Markdown("# 批量图像对比分析工具")
api_key_input = gr.Textbox(label="API Key", placeholder="输入您的 API Key", type="password")
api_type_input = gr.Radio(label="API 类型", choices=["GPT", "DeepSeek"], value="GPT")
images_a_input = gr.File(label="上传文件夹A图片", file_types=[".png", ".jpg", ".jpeg", ".bmp", ".tiff", ".gif", ".webp"], file_count="multiple")
images_b_input = gr.File(label="上传文件夹B图片", file_types=[".png", ".jpg", ".jpeg", ".bmp", ".tiff", ".gif", ".webp"], file_count="multiple")
analyze_button = gr.Button("开始批量分析")
with gr.Row():
result_gallery = gr.Gallery(label="差异图像")
result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)
def process_batch_analysis(images_a, images_b, api_key, api_type):
images_a = [Image.open(img).convert("RGB") for img in images_a]
images_b = [Image.open(img).convert("RGB") for img in images_b]
results = batch_analyze(images_a, images_b, api_key, api_type)
all_images = []
all_texts = []
for result in results:
all_images.extend(result["saved_images"])
all_images.append((result["bar_chart"], "Bar Chart"))
all_images.append((result["pie_chart"], "Pie Chart"))
all_texts.append(f"{result['pair'][0]} vs {result['pair'][1]}:\n{result['text_analysis']}")
return all_images, "\n\n".join(all_texts)
analyze_button.click(
fn=process_batch_analysis,
inputs=[images_a_input, images_b_input, api_key_input, api_type_input],
outputs=[result_gallery, result_text_analysis]
)
demo.launch()