Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
-
|
7 |
|
8 |
# 初始化模型
|
9 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
@@ -11,11 +11,8 @@ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
11 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
|
14 |
-
# GPT API 配置
|
15 |
-
openai.api_key = "your_openai_api_key"
|
16 |
-
|
17 |
# 定义功能函数
|
18 |
-
def analyze_images(image_a, image_b):
|
19 |
# BLIP生成描述
|
20 |
def generate_caption(image):
|
21 |
inputs = blip_processor(image, return_tensors="pt")
|
@@ -44,17 +41,17 @@ def analyze_images(image_a, image_b):
|
|
44 |
cosine_similarity = np.dot(features_a, features_b.T) / (np.linalg.norm(features_a) * np.linalg.norm(features_b))
|
45 |
latent_diff = np.abs(features_a - features_b).tolist()
|
46 |
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
"
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
)
|
57 |
-
textual_analysis = gpt_response
|
58 |
|
59 |
# 返回结果
|
60 |
return {
|
@@ -75,6 +72,8 @@ with gr.Blocks() as demo:
|
|
75 |
with gr.Column():
|
76 |
image_b = gr.Image(label="图片B", type="pil") # 使用 PIL 类型
|
77 |
|
|
|
|
|
78 |
analyze_button = gr.Button("分析图片")
|
79 |
result_caption_a = gr.Textbox(label="图片A描述", interactive=False)
|
80 |
result_caption_b = gr.Textbox(label="图片B描述", interactive=False)
|
@@ -83,13 +82,13 @@ with gr.Blocks() as demo:
|
|
83 |
result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)
|
84 |
|
85 |
# 分析逻辑
|
86 |
-
def process_analysis(img_a, img_b):
|
87 |
-
results = analyze_images(img_a, img_b)
|
88 |
return results["caption_a"], results["caption_b"], results["similarity"], results["latent_diff"], results["text_analysis"]
|
89 |
|
90 |
analyze_button.click(
|
91 |
fn=process_analysis,
|
92 |
-
inputs=[image_a, image_b],
|
93 |
outputs=[result_caption_a, result_caption_b, result_similarity, result_latent_diff, result_text_analysis]
|
94 |
)
|
95 |
|
|
|
3 |
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
6 |
+
from openai import OpenAI
|
7 |
|
8 |
# 初始化模型
|
9 |
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
|
|
11 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
13 |
|
|
|
|
|
|
|
14 |
# 定义功能函数
|
15 |
+
def analyze_images(image_a, image_b, api_key):
|
16 |
# BLIP生成描述
|
17 |
def generate_caption(image):
|
18 |
inputs = blip_processor(image, return_tensors="pt")
|
|
|
41 |
cosine_similarity = np.dot(features_a, features_b.T) / (np.linalg.norm(features_a) * np.linalg.norm(features_b))
|
42 |
latent_diff = np.abs(features_a - features_b).tolist()
|
43 |
|
44 |
+
# 调用 DeepSeek API 生成详细分析
|
45 |
+
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
46 |
+
gpt_response = client.chat.completions.create(
|
47 |
+
model="deepseek-chat",
|
48 |
+
messages=[
|
49 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
50 |
+
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
|
51 |
+
],
|
52 |
+
stream=False
|
53 |
)
|
54 |
+
textual_analysis = gpt_response.choices[0].message.content.strip()
|
55 |
|
56 |
# 返回结果
|
57 |
return {
|
|
|
72 |
with gr.Column():
|
73 |
image_b = gr.Image(label="图片B", type="pil") # 使用 PIL 类型
|
74 |
|
75 |
+
api_key_input = gr.Textbox(label="API Key", placeholder="输入您的 DeepSeek API Key", type="password")
|
76 |
+
|
77 |
analyze_button = gr.Button("分析图片")
|
78 |
result_caption_a = gr.Textbox(label="图片A描述", interactive=False)
|
79 |
result_caption_b = gr.Textbox(label="图片B描述", interactive=False)
|
|
|
82 |
result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)
|
83 |
|
84 |
# 分析逻辑
|
85 |
+
def process_analysis(img_a, img_b, api_key):
|
86 |
+
results = analyze_images(img_a, img_b, api_key)
|
87 |
return results["caption_a"], results["caption_b"], results["similarity"], results["latent_diff"], results["text_analysis"]
|
88 |
|
89 |
analyze_button.click(
|
90 |
fn=process_analysis,
|
91 |
+
inputs=[image_a, image_b, api_key_input],
|
92 |
outputs=[result_caption_a, result_caption_b, result_similarity, result_latent_diff, result_text_analysis]
|
93 |
)
|
94 |
|