Spaces:
Sleeping
Sleeping
Create batch-app.py
Browse files- batch-app.py +174 -0
batch-app.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from PIL import Image, ImageChops, ImageFilter
|
| 4 |
+
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
| 5 |
+
import torch
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
|
| 8 |
+
# 初始化模型
|
| 9 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 10 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 11 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 12 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 13 |
+
|
| 14 |
+
# 图像处理函数
|
| 15 |
+
def compute_difference_images(img_a, img_b):
|
| 16 |
+
def extract_sketch(image):
|
| 17 |
+
grayscale = image.convert("L")
|
| 18 |
+
inverted = ImageChops.invert(grayscale)
|
| 19 |
+
sketch = ImageChops.screen(grayscale, inverted)
|
| 20 |
+
return sketch
|
| 21 |
+
|
| 22 |
+
def compute_normal_map(image):
|
| 23 |
+
edges = image.filter(ImageFilter.FIND_EDGES)
|
| 24 |
+
return edges
|
| 25 |
+
|
| 26 |
+
diff_overlay = ImageChops.difference(img_a, img_b)
|
| 27 |
+
return {
|
| 28 |
+
"original_a": img_a,
|
| 29 |
+
"original_b": img_b,
|
| 30 |
+
"sketch_a": extract_sketch(img_a),
|
| 31 |
+
"sketch_b": extract_sketch(img_b),
|
| 32 |
+
"normal_a": compute_normal_map(img_a),
|
| 33 |
+
"normal_b": compute_normal_map(img_b),
|
| 34 |
+
"diff_overlay": diff_overlay
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
# 保存图像到文件
|
| 38 |
+
def save_images(images):
|
| 39 |
+
paths = []
|
| 40 |
+
for key, img in images.items():
|
| 41 |
+
path = f"{key}.png"
|
| 42 |
+
img.save(path)
|
| 43 |
+
paths.append((path, key.replace("_", " ").capitalize()))
|
| 44 |
+
return paths
|
| 45 |
+
|
| 46 |
+
# BLIP生成更详尽描述
|
| 47 |
+
def generate_detailed_caption(image):
|
| 48 |
+
inputs = blip_processor(image, return_tensors="pt")
|
| 49 |
+
caption = blip_model.generate(**inputs, max_length=128, num_beams=5, no_repeat_ngram_size=2)
|
| 50 |
+
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
| 51 |
+
|
| 52 |
+
# 特征差异可视化
|
| 53 |
+
def plot_feature_differences(latent_diff):
|
| 54 |
+
diff_magnitude = [abs(x) for x in latent_diff[0]]
|
| 55 |
+
indices = range(len(diff_magnitude))
|
| 56 |
+
|
| 57 |
+
plt.figure(figsize=(8, 4))
|
| 58 |
+
plt.bar(indices, diff_magnitude, alpha=0.7)
|
| 59 |
+
plt.xlabel("Feature Index")
|
| 60 |
+
plt.ylabel("Magnitude of Difference")
|
| 61 |
+
plt.title("Feature Differences (Bar Chart)")
|
| 62 |
+
bar_chart_path = "bar_chart.png"
|
| 63 |
+
plt.savefig(bar_chart_path)
|
| 64 |
+
plt.close()
|
| 65 |
+
|
| 66 |
+
plt.figure(figsize=(6, 6))
|
| 67 |
+
plt.pie(diff_magnitude[:10], labels=range(10), autopct="%1.1f%%", startangle=140)
|
| 68 |
+
plt.title("Top 10 Feature Differences (Pie Chart)")
|
| 69 |
+
pie_chart_path = "pie_chart.png"
|
| 70 |
+
plt.savefig(pie_chart_path)
|
| 71 |
+
plt.close()
|
| 72 |
+
|
| 73 |
+
return bar_chart_path, pie_chart_path
|
| 74 |
+
|
| 75 |
+
# 生成详细分析
|
| 76 |
+
def generate_text_analysis(api_key, api_type, caption_a, caption_b):
|
| 77 |
+
import openai
|
| 78 |
+
|
| 79 |
+
if api_type == "DeepSeek":
|
| 80 |
+
from openai import OpenAI
|
| 81 |
+
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
| 82 |
+
else:
|
| 83 |
+
client = openai
|
| 84 |
+
|
| 85 |
+
response = client.ChatCompletion.create(
|
| 86 |
+
model="gpt-4" if api_type == "GPT" else "deepseek-chat",
|
| 87 |
+
messages=[
|
| 88 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 89 |
+
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
|
| 90 |
+
]
|
| 91 |
+
)
|
| 92 |
+
return response['choices'][0]['message']['content'].strip()
|
| 93 |
+
|
| 94 |
+
# 分析函数
|
| 95 |
+
def analyze_images(img_a, img_b, api_key, api_type):
|
| 96 |
+
images_diff = compute_difference_images(img_a, img_b)
|
| 97 |
+
saved_images = save_images(images_diff)
|
| 98 |
+
|
| 99 |
+
caption_a = generate_detailed_caption(img_a)
|
| 100 |
+
caption_b = generate_detailed_caption(img_b)
|
| 101 |
+
|
| 102 |
+
inputs = clip_processor(images=img_a, return_tensors="pt")
|
| 103 |
+
features_a = clip_model.get_image_features(**inputs).detach().numpy()
|
| 104 |
+
|
| 105 |
+
inputs = clip_processor(images=img_b, return_tensors="pt")
|
| 106 |
+
features_b = clip_model.get_image_features(**inputs).detach().numpy()
|
| 107 |
+
|
| 108 |
+
latent_diff = np.abs(features_a - features_b).tolist()
|
| 109 |
+
|
| 110 |
+
bar_chart, pie_chart = plot_feature_differences(latent_diff)
|
| 111 |
+
text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)
|
| 112 |
+
|
| 113 |
+
return {
|
| 114 |
+
"saved_images": saved_images,
|
| 115 |
+
"caption_a": caption_a,
|
| 116 |
+
"caption_b": caption_b,
|
| 117 |
+
"text_analysis": text_analysis,
|
| 118 |
+
"bar_chart": bar_chart,
|
| 119 |
+
"pie_chart": pie_chart
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
# 批量分析
|
| 123 |
+
def batch_analyze(folder_a, folder_b, api_key, api_type):
|
| 124 |
+
def load_images(folder_path):
|
| 125 |
+
files = sorted([os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.lower().endswith(('.png', '.jpg', '.jpeg'))])
|
| 126 |
+
return [Image.open(f).convert("RGB") for f in files]
|
| 127 |
+
|
| 128 |
+
images_a = load_images(folder_a)
|
| 129 |
+
images_b = load_images(folder_b)
|
| 130 |
+
num_pairs = min(len(images_a), len(images_b))
|
| 131 |
+
|
| 132 |
+
results = []
|
| 133 |
+
for i in range(num_pairs):
|
| 134 |
+
result = analyze_images(images_a[i], images_b[i], api_key, api_type)
|
| 135 |
+
results.append({
|
| 136 |
+
"pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
|
| 137 |
+
**result
|
| 138 |
+
})
|
| 139 |
+
return results
|
| 140 |
+
|
| 141 |
+
# Gradio界面
|
| 142 |
+
with gr.Blocks() as demo:
|
| 143 |
+
gr.Markdown("# 批量图像对比分析工具")
|
| 144 |
+
|
| 145 |
+
api_key_input = gr.Textbox(label="API Key", placeholder="输入您的 API Key", type="password")
|
| 146 |
+
api_type_input = gr.Dropdown(label="API 类型", choices=["GPT", "DeepSeek"], value="GPT")
|
| 147 |
+
folder_a_input = gr.Textbox(label="文件夹A路径", placeholder="输入包含图片A的文件夹路径")
|
| 148 |
+
folder_b_input = gr.Textbox(label="文件夹B路径", placeholder="输入包含图片B的文件夹路径")
|
| 149 |
+
analyze_button = gr.Button("开始批量分析")
|
| 150 |
+
|
| 151 |
+
with gr.Row():
|
| 152 |
+
result_gallery = gr.Gallery(label="差异图像").style(grid=3)
|
| 153 |
+
result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)
|
| 154 |
+
|
| 155 |
+
def process_batch_analysis(folder_a, folder_b, api_key, api_type):
|
| 156 |
+
results = batch_analyze(folder_a, folder_b, api_key, api_type)
|
| 157 |
+
all_images = []
|
| 158 |
+
all_texts = []
|
| 159 |
+
|
| 160 |
+
for result in results:
|
| 161 |
+
all_images.extend(result["saved_images"])
|
| 162 |
+
all_images.append((result["bar_chart"], "Bar Chart"))
|
| 163 |
+
all_images.append((result["pie_chart"], "Pie Chart"))
|
| 164 |
+
all_texts.append(f"{result['pair'][0]} vs {result['pair'][1]}:\n{result['text_analysis']}")
|
| 165 |
+
|
| 166 |
+
return all_images, "\n\n".join(all_texts)
|
| 167 |
+
|
| 168 |
+
analyze_button.click(
|
| 169 |
+
fn=process_batch_analysis,
|
| 170 |
+
inputs=[folder_a_input, folder_b_input, api_key_input, api_type_input],
|
| 171 |
+
outputs=[result_gallery, result_text_analysis]
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
demo.launch()
|