Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,6 +13,9 @@ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
| 13 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 14 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
# 图像处理函数
|
| 17 |
def compute_difference_images(img_a, img_b):
|
| 18 |
def extract_sketch(image):
|
|
@@ -37,10 +40,10 @@ def compute_difference_images(img_a, img_b):
|
|
| 37 |
}
|
| 38 |
|
| 39 |
# 保存图像到文件
|
| 40 |
-
def save_images(images):
|
| 41 |
paths = []
|
| 42 |
for key, img in images.items():
|
| 43 |
-
path = f"{key}.png"
|
| 44 |
img.save(path)
|
| 45 |
paths.append((path, key.replace("_", " ").capitalize()))
|
| 46 |
return paths
|
|
@@ -52,23 +55,29 @@ def generate_detailed_caption(image):
|
|
| 52 |
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
| 53 |
|
| 54 |
# 特征差异可视化
|
| 55 |
-
def plot_feature_differences(latent_diff):
|
| 56 |
diff_magnitude = [abs(x) for x in latent_diff[0]]
|
| 57 |
indices = range(len(diff_magnitude))
|
|
|
|
| 58 |
|
| 59 |
plt.figure(figsize=(8, 4))
|
| 60 |
plt.bar(indices, diff_magnitude, alpha=0.7)
|
| 61 |
plt.xlabel("Feature Index (Latent Dimension)")
|
| 62 |
plt.ylabel("Magnitude of Difference")
|
| 63 |
plt.title("Feature Differences (Bar Chart)")
|
| 64 |
-
bar_chart_path = "
|
| 65 |
plt.savefig(bar_chart_path)
|
| 66 |
plt.close()
|
| 67 |
|
| 68 |
plt.figure(figsize=(6, 6))
|
| 69 |
-
plt.pie(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
plt.title("Top 10 Feature Differences (Pie Chart)")
|
| 71 |
-
pie_chart_path = "
|
| 72 |
plt.savefig(pie_chart_path)
|
| 73 |
plt.close()
|
| 74 |
|
|
@@ -88,13 +97,12 @@ def generate_text_analysis(api_key, api_type, caption_a, caption_b):
|
|
| 88 |
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
|
| 89 |
]
|
| 90 |
)
|
| 91 |
-
# 修复: 正确访问返回值
|
| 92 |
return response.choices[0].message.content.strip()
|
| 93 |
|
| 94 |
# 分析函数
|
| 95 |
-
def analyze_images(img_a, img_b, api_key, api_type):
|
| 96 |
images_diff = compute_difference_images(img_a, img_b)
|
| 97 |
-
saved_images = save_images(images_diff)
|
| 98 |
|
| 99 |
caption_a = generate_detailed_caption(img_a)
|
| 100 |
caption_b = generate_detailed_caption(img_b)
|
|
@@ -107,7 +115,7 @@ def analyze_images(img_a, img_b, api_key, api_type):
|
|
| 107 |
|
| 108 |
latent_diff = np.abs(features_a - features_b).tolist()
|
| 109 |
|
| 110 |
-
bar_chart, pie_chart = plot_feature_differences(latent_diff)
|
| 111 |
text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)
|
| 112 |
|
| 113 |
return {
|
|
@@ -125,7 +133,8 @@ def batch_analyze(images_a, images_b, api_key, api_type):
|
|
| 125 |
|
| 126 |
results = []
|
| 127 |
for i in range(num_pairs):
|
| 128 |
-
|
|
|
|
| 129 |
results.append({
|
| 130 |
"pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
|
| 131 |
**result
|
|
|
|
| 13 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 14 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 15 |
|
| 16 |
+
# 定义CLIP特征的名称(假设的特征名称,您可以根据需要调整)
|
| 17 |
+
CLIP_FEATURE_NAMES = [f"Dimension {i}" for i in range(512)]
|
| 18 |
+
|
| 19 |
# 图像处理函数
|
| 20 |
def compute_difference_images(img_a, img_b):
|
| 21 |
def extract_sketch(image):
|
|
|
|
| 40 |
}
|
| 41 |
|
| 42 |
# 保存图像到文件
|
| 43 |
+
def save_images(images, prefix):
|
| 44 |
paths = []
|
| 45 |
for key, img in images.items():
|
| 46 |
+
path = f"{prefix}_{key}.png"
|
| 47 |
img.save(path)
|
| 48 |
paths.append((path, key.replace("_", " ").capitalize()))
|
| 49 |
return paths
|
|
|
|
| 55 |
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
| 56 |
|
| 57 |
# 特征差异可视化
|
| 58 |
+
def plot_feature_differences(latent_diff, prefix):
|
| 59 |
diff_magnitude = [abs(x) for x in latent_diff[0]]
|
| 60 |
indices = range(len(diff_magnitude))
|
| 61 |
+
top_indices = np.argsort(diff_magnitude)[-10:][::-1] # Top 10 differences
|
| 62 |
|
| 63 |
plt.figure(figsize=(8, 4))
|
| 64 |
plt.bar(indices, diff_magnitude, alpha=0.7)
|
| 65 |
plt.xlabel("Feature Index (Latent Dimension)")
|
| 66 |
plt.ylabel("Magnitude of Difference")
|
| 67 |
plt.title("Feature Differences (Bar Chart)")
|
| 68 |
+
bar_chart_path = f"{prefix}_bar_chart.png"
|
| 69 |
plt.savefig(bar_chart_path)
|
| 70 |
plt.close()
|
| 71 |
|
| 72 |
plt.figure(figsize=(6, 6))
|
| 73 |
+
plt.pie(
|
| 74 |
+
[diff_magnitude[i] for i in top_indices],
|
| 75 |
+
labels=[CLIP_FEATURE_NAMES[i] for i in top_indices],
|
| 76 |
+
autopct="%1.1f%%",
|
| 77 |
+
startangle=140
|
| 78 |
+
)
|
| 79 |
plt.title("Top 10 Feature Differences (Pie Chart)")
|
| 80 |
+
pie_chart_path = f"{prefix}_pie_chart.png"
|
| 81 |
plt.savefig(pie_chart_path)
|
| 82 |
plt.close()
|
| 83 |
|
|
|
|
| 97 |
{"role": "user", "content": f"图片A的描述为:{caption_a}。图片B的描述为:{caption_b}。\n请对两张图片的内容和潜在特征区别进行详细分析,并输出一个简洁但富有条理的总结。"}
|
| 98 |
]
|
| 99 |
)
|
|
|
|
| 100 |
return response.choices[0].message.content.strip()
|
| 101 |
|
| 102 |
# 分析函数
|
| 103 |
+
def analyze_images(img_a, img_b, api_key, api_type, prefix):
|
| 104 |
images_diff = compute_difference_images(img_a, img_b)
|
| 105 |
+
saved_images = save_images(images_diff, prefix)
|
| 106 |
|
| 107 |
caption_a = generate_detailed_caption(img_a)
|
| 108 |
caption_b = generate_detailed_caption(img_b)
|
|
|
|
| 115 |
|
| 116 |
latent_diff = np.abs(features_a - features_b).tolist()
|
| 117 |
|
| 118 |
+
bar_chart, pie_chart = plot_feature_differences(latent_diff, prefix)
|
| 119 |
text_analysis = generate_text_analysis(api_key, api_type, caption_a, caption_b)
|
| 120 |
|
| 121 |
return {
|
|
|
|
| 133 |
|
| 134 |
results = []
|
| 135 |
for i in range(num_pairs):
|
| 136 |
+
prefix = f"comparison_{i+1}"
|
| 137 |
+
result = analyze_images(images_a[i], images_b[i], api_key, api_type, prefix)
|
| 138 |
results.append({
|
| 139 |
"pair": (f"Image A-{i+1}", f"Image B-{i+1}"),
|
| 140 |
**result
|