Spaces:
Sleeping
Sleeping
import gradio as gr | |
from langchain_community.llms import HuggingFaceHub | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain import hub | |
from rerankers import Reranker | |
import os | |
# Configuraci贸n del token de acceso a Hugging Face (si usas modelo privado) | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
# Cargar PDF | |
loader = PyPDFLoader("80dias.pdf") | |
documents = loader.load() | |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20) | |
splits = splitter.split_documents(documents) | |
# Crear embeddings | |
embedding_model = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model) | |
vectordb = Chroma.from_documents(splits, embedding=embeddings) | |
# Modelo LLM desde HuggingFace (usa uno disponible en Spaces) | |
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.5, "max_new_tokens": 500}) | |
chain = llm | StrOutputParser() | |
# Reranker | |
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert") | |
# Funci贸n RAG | |
def rag_chat(message, history): | |
# Solo usamos el mensaje del usuario | |
query = message | |
results = vectordb.similarity_search_with_score(query) | |
context = [] | |
for doc, score in results: | |
if score < 7: | |
context.append(doc.page_content) | |
if not context: | |
return "No tengo informaci贸n suficiente para responder a esa pregunta." | |
ranking = ranker.rank(query=query, docs=context) | |
best_context = ranking[0].text | |
prompt = f"""Contesta a la siguiente pregunta usando solo el contexto que se proporciona: | |
Contexto: | |
{best_context} | |
Pregunta: {query} | |
Respuesta:""" | |
return llm.invoke(prompt) | |
# Interfaz Gradio | |
iface = gr.ChatInterface( | |
fn=rag_chat, | |
title="Chat Julio Verne - RAG", | |
description="Pregunta lo que quieras sobre *La vuelta al mundo en 80 d铆as* de Julio Verne.", | |
chatbot=gr.Chatbot(type="messages") # 馃憟 Esto elimina el warning de formato obsoleto | |
) | |
iface.launch() | |