Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain_community.chat_models import HuggingFaceHub
|
3 |
+
from langchain_community.vectorstores import Chroma
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_core.output_parsers import StrOutputParser
|
7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
+
from langchain import hub
|
9 |
+
from rerankers import Reranker
|
10 |
+
import os
|
11 |
+
|
12 |
+
# Configuraci贸n del token de acceso a Hugging Face (si usas modelo privado)
|
13 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN", "")
|
14 |
+
|
15 |
+
# Cargar PDF
|
16 |
+
loader = PyPDFLoader("80dias.pdf")
|
17 |
+
documents = loader.load()
|
18 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
19 |
+
splits = splitter.split_documents(documents)
|
20 |
+
|
21 |
+
# Crear embeddings
|
22 |
+
embedding_model = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
23 |
+
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
24 |
+
vectordb = Chroma.from_documents(splits, embedding=embeddings)
|
25 |
+
|
26 |
+
# Modelo LLM desde HuggingFace (usa uno disponible en Spaces)
|
27 |
+
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.5, "max_new_tokens": 500})
|
28 |
+
chain = llm | StrOutputParser()
|
29 |
+
|
30 |
+
# Reranker
|
31 |
+
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert")
|
32 |
+
|
33 |
+
# Funci贸n RAG
|
34 |
+
def rag_chat(query):
|
35 |
+
results = vectordb.similarity_search_with_score(query)
|
36 |
+
context = []
|
37 |
+
for doc, score in results:
|
38 |
+
if score < 7:
|
39 |
+
context.append(doc.page_content)
|
40 |
+
if not context:
|
41 |
+
return "No tengo informaci贸n para responder a esa pregunta."
|
42 |
+
|
43 |
+
ranking = ranker.rank(query=query, docs=context)
|
44 |
+
best_context = ranking[0].text
|
45 |
+
|
46 |
+
prompt = hub.pull("rlm/rag-prompt")
|
47 |
+
rag_chain = prompt | llm | StrOutputParser()
|
48 |
+
|
49 |
+
result = rag_chain.invoke({"context": best_context, "question": query})
|
50 |
+
return result
|
51 |
+
|
52 |
+
# Interfaz Gradio
|
53 |
+
iface = gr.ChatInterface(fn=rag_chat, title="Chat Julio Verne - RAG", description="Pregunta lo que quieras sobre *La vuelta al mundo en 80 d铆as* de Julio Verne.")
|
54 |
+
iface.launch()
|