Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,13 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain_core.output_parsers import StrOutputParser
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
-
from
|
9 |
from rerankers import Reranker
|
10 |
-
import os
|
11 |
|
12 |
-
#
|
13 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
14 |
-
|
15 |
-
# Cargar PDF
|
16 |
loader = PyPDFLoader("80dias.pdf")
|
17 |
documents = loader.load()
|
18 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
@@ -23,44 +18,54 @@ embedding_model = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
|
23 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
24 |
vectordb = Chroma.from_documents(splits, embedding=embeddings)
|
25 |
|
26 |
-
#
|
27 |
-
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1", model_kwargs={"temperature": 0.5, "max_new_tokens": 500})
|
28 |
-
chain = llm | StrOutputParser()
|
29 |
-
|
30 |
-
# Reranker
|
31 |
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert")
|
32 |
|
33 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def rag_chat(message, history):
|
35 |
-
# Solo usamos el mensaje del usuario
|
36 |
query = message
|
37 |
-
|
38 |
results = vectordb.similarity_search_with_score(query)
|
|
|
|
|
39 |
context = []
|
40 |
for doc, score in results:
|
41 |
if score < 7:
|
42 |
context.append(doc.page_content)
|
|
|
43 |
if not context:
|
44 |
return "No tengo informaci贸n suficiente para responder a esa pregunta."
|
45 |
|
|
|
46 |
ranking = ranker.rank(query=query, docs=context)
|
47 |
best_context = ranking[0].text
|
48 |
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
iface = gr.ChatInterface(
|
61 |
fn=rag_chat,
|
62 |
title="Chat Julio Verne - RAG",
|
63 |
description="Pregunta lo que quieras sobre *La vuelta al mundo en 80 d铆as* de Julio Verne.",
|
64 |
-
chatbot=gr.Chatbot(type="messages")
|
|
|
65 |
)
|
|
|
66 |
iface.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
6 |
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
from rerankers import Reranker
|
|
|
9 |
|
10 |
+
# Cargar PDF y partirlo en chunks
|
|
|
|
|
|
|
11 |
loader = PyPDFLoader("80dias.pdf")
|
12 |
documents = loader.load()
|
13 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
|
|
18 |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
19 |
vectordb = Chroma.from_documents(splits, embedding=embeddings)
|
20 |
|
21 |
+
# Inicializar reranker
|
|
|
|
|
|
|
|
|
22 |
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert")
|
23 |
|
24 |
+
# Cargar modelo de lenguaje de Hugging Face
|
25 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype="auto")
|
28 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
29 |
+
|
30 |
+
# Funci贸n principal RAG
|
31 |
def rag_chat(message, history):
|
|
|
32 |
query = message
|
|
|
33 |
results = vectordb.similarity_search_with_score(query)
|
34 |
+
|
35 |
+
# Seleccionar contextos relevantes
|
36 |
context = []
|
37 |
for doc, score in results:
|
38 |
if score < 7:
|
39 |
context.append(doc.page_content)
|
40 |
+
|
41 |
if not context:
|
42 |
return "No tengo informaci贸n suficiente para responder a esa pregunta."
|
43 |
|
44 |
+
# Aplicar reranking
|
45 |
ranking = ranker.rank(query=query, docs=context)
|
46 |
best_context = ranking[0].text
|
47 |
|
48 |
+
# Crear prompt final
|
49 |
+
prompt = f"""Responde a la siguiente pregunta utilizando solo el contexto proporcionado:
|
50 |
|
51 |
+
Contexto:
|
52 |
+
{best_context}
|
53 |
|
54 |
+
Pregunta: {query}
|
55 |
+
Respuesta:"""
|
56 |
|
57 |
+
# Generar respuesta
|
58 |
+
output = generator(prompt, max_new_tokens=300, do_sample=False)[0]["generated_text"]
|
59 |
+
response = output.split("Respuesta:")[-1].strip()
|
60 |
+
return response
|
61 |
+
|
62 |
+
# Gradio Chat Interface
|
63 |
iface = gr.ChatInterface(
|
64 |
fn=rag_chat,
|
65 |
title="Chat Julio Verne - RAG",
|
66 |
description="Pregunta lo que quieras sobre *La vuelta al mundo en 80 d铆as* de Julio Verne.",
|
67 |
+
chatbot=gr.Chatbot(type="messages"),
|
68 |
+
theme="default"
|
69 |
)
|
70 |
+
|
71 |
iface.launch()
|