Spaces:
Running
Running
File size: 5,251 Bytes
12a6276 9d5d030 12a6276 9d5d030 4136261 3fb2bff 9d5d030 3fb2bff 4136261 3fb2bff 9d5d030 12a6276 4136261 9d5d030 3fb2bff 9d5d030 4136261 9d5d030 4136261 12a6276 3fb2bff 12a6276 4136261 12a6276 3fb2bff 4136261 3fb2bff 4136261 3fb2bff 4136261 3fb2bff 9d5d030 3fb2bff 4136261 9d5d030 4136261 3fb2bff 4136261 3fb2bff 4136261 3fb2bff 4136261 9d5d030 12a6276 3fb2bff 4136261 3fb2bff 9d5d030 4136261 9d5d030 4136261 9d5d030 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
from transformers import pipeline, set_seed
import re
import numpy as np
import pandas as pd
# Set a seed for reproducibility
set_seed(42)
# Define five small models for generation (free, lightweight)
small_models = [
"distilgpt2", # ~82M parameters
"gpt2", # ~124M parameters
"EleutherAI/gpt-neo-125M", # ~125M parameters
"sshleifer/tiny-gpt2", # extremely small variant
"microsoft/DialoGPT-small" # DialoGPT small
]
# Define five languages: English, German, Spanish, French, Portuguese
languages = {
"en": "English",
"de": "German",
"es": "Spanish",
"fr": "French",
"pt": "Portuguese"
}
# Define two cost-effective grammar evaluation models (unchanged)
grammar_model_names = [
"vennify/t5-base-grammar-correction",
"hassaanik/grammar-correction-model"
]
# Functions to load pipelines on demand
def load_generation_pipeline(model_name):
try:
# Using text-generation pipeline for causal LM models
return pipeline("text-generation", model=model_name)
except Exception as e:
print(f"Error loading generation model {model_name}: {e}")
return None
def load_grammar_pipeline(model_name):
try:
return pipeline("text2text-generation", model=model_name)
except Exception as e:
print(f"Error loading grammar model {model_name}: {e}")
return None
# Pre-load grammar evaluator pipelines
rater_models = []
for model_name in grammar_model_names:
p = load_grammar_pipeline(model_name)
if p is not None:
rater_models.append(p)
# Utility functions for checking palindromes and cleaning text
def clean_text(text):
return re.sub(r'[^a-zA-Z0-9]', '', text.lower())
def is_palindrome(text):
cleaned = clean_text(text)
return cleaned == cleaned[::-1]
# Updated prompt that instructs the model to output ONLY the palindrome.
def build_prompt(lang):
return (
f"Instruction: Write the longest original palindrome you can in {lang}. "
"The output should contain nothing else but the palindrome. "
"Do not include any additional commentary or repeated instructions. "
"Palindrome: "
)
def grammar_prompt(pal, lang):
return f'''Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. Only return a number with no explanation:\n\n"{pal}"\n'''
def extract_score(text):
match = re.search(r"\d{1,3}", text)
if match:
score = int(match.group())
return min(max(score, 0), 100)
return 0
# Main benchmark function that runs all tests at once
def run_benchmark_all():
results = []
# Iterate over each small model
for model_name in small_models:
gen_pipeline = load_generation_pipeline(model_name)
if gen_pipeline is None:
continue # Skip this model if it fails to load
# Iterate over each language
for code, lang in languages.items():
prompt = build_prompt(lang)
try:
# Generate text with a moderate max token limit
gen_output = gen_pipeline(prompt, max_new_tokens=50, do_sample=True)[0]['generated_text'].strip()
except Exception as e:
gen_output = f"Error generating text: {e}"
# Check if the generated output is a palindrome
valid = is_palindrome(gen_output)
cleaned_len = len(clean_text(gen_output))
# Evaluate grammar using both grammar models
scores = []
for rater in rater_models:
rprompt = grammar_prompt(gen_output, lang)
try:
rtext = rater(rprompt, max_new_tokens=10)[0]['generated_text']
score = extract_score(rtext)
scores.append(score)
except Exception as e:
scores.append(0)
avg_score = np.mean(scores) if scores else 0
# Penalize if the generated text is not a valid palindrome
penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5
final_score = round(cleaned_len * penalty, 2)
results.append({
"Model": model_name,
"Language": lang,
"Palindrome": gen_output,
"Valid": "✅" if valid else "❌",
"Length": cleaned_len,
"Grammar Score": avg_score,
"Final Score": final_score
})
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True)
return gr.Dataframe(df)
# Build the Gradio UI using Blocks (canvas layout)
with gr.Blocks(title="Small Model Palindrome Benchmark") as demo:
gr.Markdown("# Small Model Palindrome Benchmark")
gr.Markdown("This benchmark automatically runs over 5 small text-generation models and 5 languages (English, German, Spanish, French, Portuguese).")
with gr.Row():
run_button = gr.Button("Run All Benchmarks")
output_table = gr.Dataframe(label="Benchmark Results")
run_button.click(fn=run_benchmark_all, inputs=[], outputs=output_table)
demo.launch()
|