Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
import re | |
from langdetect import detect | |
import numpy as np | |
import pandas as pd | |
# Load models for generation and rating | |
gen_model = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1") | |
rater_models = [ | |
pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta"), | |
pipeline("text-generation", model="google/flan-t5-large") | |
] | |
# Language list | |
languages = { | |
"en": "English", "es": "Spanish", "fr": "French", "de": "German", "it": "Italian", | |
"pt": "Portuguese", "ru": "Russian", "ar": "Arabic", "hi": "Hindi", "ja": "Japanese" | |
} | |
def clean_text(text): | |
return re.sub(r'[^a-zA-Z0-9]', '', text.lower()) | |
def is_palindrome(text): | |
cleaned = clean_text(text) | |
return cleaned == cleaned[::-1] | |
def grammar_prompt(pal, lang): | |
return f'''Rate from 0 to 100 how grammatically correct this palindrome is in {lang}. Only return a number with no explanation:\n\n"{pal}"\n''' | |
def extract_score(text): | |
match = re.search(r"\d{1,3}", text) | |
if match: | |
score = int(match.group()) | |
return min(max(score, 0), 100) | |
return 0 | |
def run_benchmark(): | |
results = [] | |
for code, lang in languages.items(): | |
prompt = f'''Write the longest original palindrome you can in {lang}. It should be creative and not a known palindrome. If it is not a correct palindrome, you will lose points according to how correct it is.''' | |
gen_output = gen_model(prompt, max_new_tokens=100, do_sample=True)[0]['generated_text'].strip() | |
valid = is_palindrome(gen_output) | |
cleaned_len = len(clean_text(gen_output)) | |
detected_lang = detect(gen_output) | |
scores = [] | |
for rater in rater_models: | |
rprompt = grammar_prompt(gen_output, lang) | |
rtext = rater(rprompt, max_new_tokens=10)[0]['generated_text'] | |
score = extract_score(rtext) | |
scores.append(score) | |
avg_score = np.mean(scores) | |
penalty = (avg_score / 100) if valid else (avg_score / 100) * 0.5 | |
final_score = round(cleaned_len * penalty, 2) | |
results.append({ | |
"Language": lang, | |
"Palindrome": gen_output, | |
"Valid": "✅" if valid else "❌", | |
"Length": cleaned_len, | |
"Grammar Score": avg_score, | |
"Final Score": final_score, | |
"Detected Lang": detected_lang | |
}) | |
df = pd.DataFrame(results).sort_values(by="Final Score", ascending=False).reset_index(drop=True) | |
return gr.Dataframe(df) | |
iface = gr.Interface(fn=run_benchmark, inputs=[], outputs="dataframe", title="🔁 LLM Palindrome Benchmark") | |
iface.launch() | |