File size: 11,342 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import os
import pytest
import shutil
import tempfile

from click.testing import CliRunner
from pathlib import Path
from unittest.mock import MagicMock, patch
from tlt.tools.cli.commands.benchmark import benchmark
from tlt.utils.types import FrameworkType
from tlt.utils.file_utils import download_and_extract_zip_file


@pytest.mark.common
@pytest.mark.parametrize('model_name,framework,batch_size,mode',
                         [['efficientnet_b0', FrameworkType.TENSORFLOW, 512, 'performance'],
                          ['inception_v3', FrameworkType.TENSORFLOW, 32, 'accuracy'],
                          ['resnet50', FrameworkType.PYTORCH, 128, 'performance'],
                          ['bert-base-cased', FrameworkType.PYTORCH, 256, 'accuracy']])
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
def test_benchmark(mock_load_dataset, mock_get_model, model_name, framework, batch_size, mode):
    """
    Tests the benchmark command and verifies that the
    expected calls are made on the tlt model object. The call parameters also verify that the benchmark command
    is able to properly identify the model's name based on the directory and the framework type based on the
    type of saved model.
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, model_name, '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    if model_name == "bert-base-cased":
        # Get the dataset
        zip_file_url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
        csv_dir = os.path.join(dataset_dir, "sms_spam_collection")
        csv_file_name = "SMSSpamCollection"
        delimiter = '\t'

        # If the SMS Spam collection csv file is not found, download and extract the file:
        if not os.path.exists(os.path.join(csv_dir, csv_file_name)):
            # Download the zip file with the SMS Spam collection dataset
            download_and_extract_zip_file(zip_file_url, csv_dir)

    try:
        for new_dir in [model_dir, dataset_dir]:
            os.makedirs(new_dir, exist_ok=True)

        if framework == FrameworkType.TENSORFLOW:
            Path(os.path.join(model_dir, 'saved_model.pb')).touch()
        elif framework == FrameworkType.PYTORCH:
            Path(os.path.join(model_dir, 'model.pt')).touch()

        model_mock = MagicMock()
        data_mock = MagicMock()

        if model_name == "bert-base-cased":
            model_mock.use_case = "text_classification"
        else:
            model_mock.use_case = "image_classification"

        mock_get_model.return_value = model_mock
        mock_load_dataset.return_value = data_mock

        # Call the benchmark command
        if model_mock.use_case == "image_classification":
            result = runner.invoke(benchmark,
                                   ["--model-dir", model_dir, "--dataset_dir", dataset_dir,
                                    "--batch-size", batch_size, "--output-dir", output_dir])
        else:
            result = runner.invoke(benchmark,
                                   ["--model-dir", model_dir, "--dataset_dir", dataset_dir,
                                    "--batch-size", batch_size, "--output-dir", output_dir,
                                    "--dataset-file", csv_file_name, "--delimiter", delimiter])

        # Verify that the expected calls were made
        mock_get_model.assert_called_once_with(model_name, framework)
        if model_mock.use_case == "image_classification":
            mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework)
        else:
            mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework,
                                                      csv_file_name=csv_file_name, delimiter=delimiter)
        assert model_mock.benchmark.called

        # Verify a successful exit code
        assert result.exit_code == 0

    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
@pytest.mark.parametrize('model_name,model_file',
                         [['bar', 'unsupported_model_type.txt'],
                          ['foo', 'potato.pb']])
def test_benchmark_bad_model_file(model_name, model_file):
    """
    Verifies that the benchmark command fails if it's given a model directory that doesn't contain a saved_model.pb or
    model.pt file.
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, model_name, '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        for new_dir in [model_dir, dataset_dir]:
            os.makedirs(new_dir)

        # Create the bogus model file
        Path(os.path.join(model_dir, model_file)).touch()

        # Call the benchmark command with the bogus model directory
        result = runner.invoke(benchmark,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir",
                                output_dir])

        # Verify that we got an error about the unsupported model type
        assert result.exit_code == 1
        assert "Benchmarking is currently only implemented for TensorFlow saved_model.pb and PyTorch model.pt models." \
               in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
@pytest.mark.parametrize('model_name,model_file,framework',
                         [['bar', 'saved_model.pb', 'tensorflow'],
                          ['foo', 'model.pt', 'pytorch']])
def test_benchmark_bad_model_dir(model_name, model_file, framework):
    """
    Verifies that benchmark command fails if it's given a model directory with a model name that we don't support
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, model_name, '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        for new_dir in [model_dir, dataset_dir]:
            os.makedirs(new_dir)

        # Create the model file
        Path(os.path.join(model_dir, model_file)).touch()

        # Call the benchmark command with the model directory
        result = runner.invoke(benchmark,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])

        # Verify that we got an error about the unsupported model for the framework
        assert result.exit_code == 1
        assert "An error occurred while getting the model" in result.output
        assert "The specified model is not supported for {}".format(framework) in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
def test_benchmark_model_dir_does_not_exist():
    """
    Verifies that benchmark command fails if the model directory does not exist
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, 'resnet_v1_50', '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        os.makedirs(dataset_dir)

        # Call the benchmark command with the model directory
        result = runner.invoke(benchmark,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])

        # Verify that we got an error model directory not existing
        assert result.exit_code == 2
        assert "--model-dir" in result.output
        assert "Directory '{}' does not exist".format(model_dir) in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
def test_benchmark_dataset_dir_does_not_exist():
    """
    Verifies that benchmark command fails if the dataset directory does not exist
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, 'resnet_v1_50', '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        os.makedirs(model_dir)

        # Call the benchmark command with the model directory
        result = runner.invoke(benchmark,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])

        # Verify that we got an error dataset directory not existing
        assert result.exit_code == 2
        assert "--dataset-dir" in result.output
        assert "Directory '{}' does not exist".format(dataset_dir) in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


class TestBenchmarkArgs:
    """
    Class for tests that are testing bad inputs for benchmarking args with generic folders for the model dir,
    dataset dir, and output dir.
    """

    def setup_class(self):
        self._runner = CliRunner()

        self._tmp_dir = tempfile.mkdtemp()
        self._model_dir = os.path.join(self._tmp_dir, 'resnet_v1_50', '3')
        self._dataset_dir = os.path.join(self._tmp_dir, 'data')
        self._output_dir = os.path.join(self._tmp_dir, 'output')

    def setup_method(self):
        for new_dir in [self._model_dir, self._dataset_dir]:
            if not os.path.exists(new_dir):
                os.makedirs(new_dir)

    def teardown_method(self):
        if os.path.exists(self._tmp_dir):
            shutil.rmtree(self._tmp_dir)

    def teardown_class(self):
        if os.path.exists(self._tmp_dir):
            shutil.rmtree(self._tmp_dir)

    @pytest.mark.common
    @pytest.mark.parametrize('batch_size',
                             ['foo', 'benchmark', '0', -1, 0])
    def test_benchmark_invalid_batch_size(self, batch_size):
        """
        Verifies that benchmark command fails if the batch size is invalid
        """
        # Create the model file
        Path(os.path.join(self._model_dir, 'saved_model.pt')).touch()

        # Call the benchmark command with the model directory
        result = self._runner.invoke(benchmark,
                                     ["--model-dir", self._model_dir,
                                      "--dataset_dir", self._dataset_dir,
                                      "--output-dir", self._output_dir,
                                      "--batch-size", batch_size])

        assert result.exit_code == 2
        assert "Invalid value for '--batch-size'" in result.output