File size: 14,830 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import os
import pytest
import shutil
import tempfile

from click.testing import CliRunner
from pathlib import Path
from unittest.mock import MagicMock, patch
from tlt.tools.cli.commands.quantize import quantize
from tlt.utils.types import FrameworkType
from tlt.utils.file_utils import download_and_extract_zip_file


@pytest.mark.common
@pytest.mark.parametrize('model_name,framework,batch_size',
                         [['efficientnet_b0', FrameworkType.TENSORFLOW, 512],
                          ['inception_v3', FrameworkType.TENSORFLOW, 32],
                          ['resnet50', FrameworkType.PYTORCH, 128],
                          ['bert-base-cased', FrameworkType.PYTORCH, 256]])
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
def test_quantize(mock_load_dataset, mock_get_model, model_name, framework, batch_size):
    """
    Tests the quantize command and verifies that the
    expected calls are made on the tlt model object. The call parameters also verify that the quantize command
    is able to properly identify the model's name based on the directory and the framework type based on the
    type of saved model.
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, model_name, '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    if model_name == "bert-base-cased":
        # Get the dataset
        zip_file_url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
        csv_dir = os.path.join(dataset_dir, "sms_spam_collection")
        csv_file_name = "SMSSpamCollection"
        delimiter = '\t'

        # If the SMS Spam collection csv file is not found, download and extract the file:
        if not os.path.exists(os.path.join(csv_dir, csv_file_name)):
            # Download the zip file with the SMS Spam collection dataset
            download_and_extract_zip_file(zip_file_url, csv_dir)

    try:
        for new_dir in [model_dir, dataset_dir]:
            os.makedirs(new_dir, exist_ok=True)

        if framework == FrameworkType.TENSORFLOW:
            Path(os.path.join(model_dir, 'saved_model.pb')).touch()
        elif framework == FrameworkType.PYTORCH:
            Path(os.path.join(model_dir, 'model.pt')).touch()

        model_mock = MagicMock()
        data_mock = MagicMock()

        if model_name == "bert-base-cased":
            model_mock.use_case = "text_classification"
        else:
            model_mock.use_case = "image_classification"

        mock_get_model.return_value = model_mock
        mock_load_dataset.return_value = data_mock

        # Call the quantize command
        if model_mock.use_case == "image_classification":
            result = runner.invoke(quantize,
                                   ["--model-dir", model_dir, "--dataset_dir", dataset_dir,
                                    "--batch-size", batch_size, "--output-dir", output_dir])
        else:
            result = runner.invoke(quantize,
                                   ["--model-dir", model_dir, "--dataset_dir", dataset_dir,
                                    "--batch-size", batch_size, "--output-dir", output_dir,
                                    "--dataset-file", csv_file_name, "--delimiter", delimiter])

        # Verify that the expected calls were made, including to create an Intel Neural Compressor config file
        mock_get_model.assert_called_once_with(model_name, framework)

        if model_mock.use_case == "image_classification":
            mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework)
        else:
            mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework,
                                                      csv_file_name=csv_file_name, delimiter=delimiter)

        assert model_mock.quantize.called

        # Verify a successful exit code
        assert result.exit_code == 0

    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
@pytest.mark.parametrize('model_name,model_file',
                         [['bar', 'unsupported_model_type.txt'],
                          ['foo', 'potato.pb']])
def test_quantize_bad_model_file(model_name, model_file):
    """
    Verifies that the quantize command fails if it's given a model directory that doesn't contain a saved_model.pb or
    model.pt file.
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, model_name, '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        for new_dir in [model_dir, dataset_dir]:
            os.makedirs(new_dir)

        # Create the bogus model file
        Path(os.path.join(model_dir, model_file)).touch()

        # Call the quantize command with the bogus model directory
        result = runner.invoke(quantize,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])

        # Verify that we got an error about the unsupported model type
        assert result.exit_code == 1
        assert "Quantization is currently only implemented for TensorFlow saved_model.pb and PyTorch model.pt models." \
               in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
@pytest.mark.parametrize('model_name,model_file,framework',
                         [['bar', 'saved_model.pb', 'tensorflow'],
                          ['foo', 'model.pt', 'pytorch']])
def test_quantize_bad_model_dir(model_name, model_file, framework):
    """
    Verifies that quantize command fails if it's given a model directory with a model name that we don't support
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, model_name, '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        for new_dir in [model_dir, dataset_dir]:
            os.makedirs(new_dir)

        # Create the model file
        Path(os.path.join(model_dir, model_file)).touch()

        # Call the quantize command with the model directory
        result = runner.invoke(quantize,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])

        # Verify that we got an error about the unsupported model for the framework
        assert result.exit_code == 1
        assert "An error occurred while getting the model" in result.output
        assert "The specified model is not supported for {}".format(framework) in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
def test_quantize_model_dir_does_not_exist():
    """
    Verifies that quantize command fails if the model directory does not exist
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, 'resnet_v1_50', '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        os.makedirs(dataset_dir)

        # Call the quantize command with the model directory
        result = runner.invoke(quantize,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])

        # Verify that we got an error model directory not existing
        assert result.exit_code == 2
        assert "--model-dir" in result.output
        assert "Directory '{}' does not exist".format(model_dir) in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
def test_quantize_dataset_dir_does_not_exist():
    """
    Verifies that quantize command fails if the dataset directory does not exist
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_dir = os.path.join(tmp_dir, 'resnet_v1_50', '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        os.makedirs(model_dir)

        # Call the quantize command with the model directory
        result = runner.invoke(quantize,
                               ["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])

        # Verify that we got an error dataset directory not existing
        assert result.exit_code == 2
        assert "--dataset-dir" in result.output
        assert "Directory '{}' does not exist".format(dataset_dir) in result.output
    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


@pytest.mark.common
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
def test_quantize_output_dir(mock_get_model, mock_load_dataset):
    """
    Verifies that quantize command increments the output directory for the quantized model each time the quantization
    command is called
    """
    runner = CliRunner()

    tmp_dir = tempfile.mkdtemp()
    model_name = 'resnet_v1_50'
    model_dir = os.path.join(tmp_dir, model_name, '3')
    dataset_dir = os.path.join(tmp_dir, 'data')
    output_dir = os.path.join(tmp_dir, 'output')

    try:
        for new_dir in [model_dir, dataset_dir]:
            os.makedirs(new_dir)

        Path(os.path.join(model_dir, 'saved_model.pb')).touch()

        model_mock = MagicMock()
        data_mock = MagicMock()
        model_mock.use_case = "image_classification"
        data_mock.use_case = "image_classification"

        mock_get_model.return_value = model_mock
        mock_load_dataset.return_value = data_mock

        for i in range(1, 5):
            # Call the quantize command
            result = runner.invoke(quantize,
                                   ["--model-dir", model_dir, "--dataset_dir", dataset_dir,
                                    "--output-dir", output_dir])
            assert result.exit_code == 0

            # Check for an expected quantization output dir with the folder number incrementing
            expected_quantize_dir = os.path.join(output_dir, "quantize", model_name, str(i))
            model_mock.quantize.called_once_with(model_dir, expected_quantize_dir)

            model_mock.reset_mock()

    finally:
        if os.path.exists(tmp_dir):
            shutil.rmtree(tmp_dir)


class TestQuantizationArgs:
    """
    Class for tests that are testing bad inputs for quntization args with generic folders for the model dir,
    dataset dir, and output dir.
    """

    def setup_class(self):
        self._runner = CliRunner()

        self._tmp_dir = tempfile.mkdtemp()
        self._model_dir = os.path.join(self._tmp_dir, 'resnet_v1_50', '3')
        self._dataset_dir = os.path.join(self._tmp_dir, 'data')
        self._output_dir = os.path.join(self._tmp_dir, 'output')

    def setup_method(self):
        for new_dir in [self._model_dir, self._dataset_dir]:
            if not os.path.exists(new_dir):
                os.makedirs(new_dir)

    def teardown_method(self):
        if os.path.exists(self._tmp_dir):
            shutil.rmtree(self._tmp_dir)

    def teardown_class(self):
        if os.path.exists(self._tmp_dir):
            shutil.rmtree(self._tmp_dir)

    @pytest.mark.common
    @pytest.mark.parametrize('max_trials',
                             [-1, -5, 'foo'])
    def test_quantize_invalid_max_trials(self, max_trials):
        """
        Verifies that quantize command fails if the max trials is invalid (should be an integer > 0)
        """

        # Create the model file
        Path(os.path.join(self._model_dir, 'saved_model.pt')).touch()

        # Call the quantize command with the model directory
        result = self._runner.invoke(quantize,
                                     ["--model-dir", self._model_dir,
                                      "--dataset_dir", self._dataset_dir,
                                      "--output-dir", self._output_dir,
                                      "--max-trials", max_trials])

        assert result.exit_code == 2
        assert "Invalid value for '--max-trials'" in result.output

    @pytest.mark.common
    @pytest.mark.parametrize('timeout', [-1, -5, 'foo'])
    def test_quantize_invalid_timeout(self, timeout):
        """
        Verifies that quantize command fails if the timeout is invalid (should be an integer >= 0)
        """

        # Create the model file
        Path(os.path.join(self._model_dir, 'saved_model.pt')).touch()

        # Call the quantize command with the model directory
        result = self._runner.invoke(quantize,
                                     ["--model-dir", self._model_dir,
                                      "--dataset_dir", self._dataset_dir,
                                      "--output-dir", self._output_dir,
                                      "--timeout", timeout])

        assert result.exit_code == 2
        assert "Invalid value for '--timeout'" in result.output

    @pytest.mark.common
    @pytest.mark.parametrize('accuracy_criterion',
                             [1.3, -5, 'foo'])
    def test_quantize_invalid_accuracy_criterion(self, accuracy_criterion):
        """
        Verifies quantize command fails if the accuracy criterion value is invalid (should be a float between 0 and 1.0)
        """

        # Create the model file
        Path(os.path.join(self._model_dir, 'saved_model.pt')).touch()

        # Call the quantize command with the model directory
        result = self._runner.invoke(quantize,
                                     ["--model-dir", self._model_dir,
                                      "--dataset_dir", self._dataset_dir,
                                      "--output-dir", self._output_dir,
                                      "--accuracy-criterion", accuracy_criterion])

        assert result.exit_code == 2
        assert "Invalid value for '--accuracy-criterion'" in result.output