Spaces:
Configuration error
Configuration error
File size: 14,830 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import os
import pytest
import shutil
import tempfile
from click.testing import CliRunner
from pathlib import Path
from unittest.mock import MagicMock, patch
from tlt.tools.cli.commands.quantize import quantize
from tlt.utils.types import FrameworkType
from tlt.utils.file_utils import download_and_extract_zip_file
@pytest.mark.common
@pytest.mark.parametrize('model_name,framework,batch_size',
[['efficientnet_b0', FrameworkType.TENSORFLOW, 512],
['inception_v3', FrameworkType.TENSORFLOW, 32],
['resnet50', FrameworkType.PYTORCH, 128],
['bert-base-cased', FrameworkType.PYTORCH, 256]])
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
def test_quantize(mock_load_dataset, mock_get_model, model_name, framework, batch_size):
"""
Tests the quantize command and verifies that the
expected calls are made on the tlt model object. The call parameters also verify that the quantize command
is able to properly identify the model's name based on the directory and the framework type based on the
type of saved model.
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
model_dir = os.path.join(tmp_dir, model_name, '3')
dataset_dir = os.path.join(tmp_dir, 'data')
output_dir = os.path.join(tmp_dir, 'output')
if model_name == "bert-base-cased":
# Get the dataset
zip_file_url = "https://archive.ics.uci.edu/static/public/228/sms+spam+collection.zip"
csv_dir = os.path.join(dataset_dir, "sms_spam_collection")
csv_file_name = "SMSSpamCollection"
delimiter = '\t'
# If the SMS Spam collection csv file is not found, download and extract the file:
if not os.path.exists(os.path.join(csv_dir, csv_file_name)):
# Download the zip file with the SMS Spam collection dataset
download_and_extract_zip_file(zip_file_url, csv_dir)
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir, exist_ok=True)
if framework == FrameworkType.TENSORFLOW:
Path(os.path.join(model_dir, 'saved_model.pb')).touch()
elif framework == FrameworkType.PYTORCH:
Path(os.path.join(model_dir, 'model.pt')).touch()
model_mock = MagicMock()
data_mock = MagicMock()
if model_name == "bert-base-cased":
model_mock.use_case = "text_classification"
else:
model_mock.use_case = "image_classification"
mock_get_model.return_value = model_mock
mock_load_dataset.return_value = data_mock
# Call the quantize command
if model_mock.use_case == "image_classification":
result = runner.invoke(quantize,
["--model-dir", model_dir, "--dataset_dir", dataset_dir,
"--batch-size", batch_size, "--output-dir", output_dir])
else:
result = runner.invoke(quantize,
["--model-dir", model_dir, "--dataset_dir", dataset_dir,
"--batch-size", batch_size, "--output-dir", output_dir,
"--dataset-file", csv_file_name, "--delimiter", delimiter])
# Verify that the expected calls were made, including to create an Intel Neural Compressor config file
mock_get_model.assert_called_once_with(model_name, framework)
if model_mock.use_case == "image_classification":
mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework)
else:
mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework,
csv_file_name=csv_file_name, delimiter=delimiter)
assert model_mock.quantize.called
# Verify a successful exit code
assert result.exit_code == 0
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
@pytest.mark.parametrize('model_name,model_file',
[['bar', 'unsupported_model_type.txt'],
['foo', 'potato.pb']])
def test_quantize_bad_model_file(model_name, model_file):
"""
Verifies that the quantize command fails if it's given a model directory that doesn't contain a saved_model.pb or
model.pt file.
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
model_dir = os.path.join(tmp_dir, model_name, '3')
dataset_dir = os.path.join(tmp_dir, 'data')
output_dir = os.path.join(tmp_dir, 'output')
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir)
# Create the bogus model file
Path(os.path.join(model_dir, model_file)).touch()
# Call the quantize command with the bogus model directory
result = runner.invoke(quantize,
["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])
# Verify that we got an error about the unsupported model type
assert result.exit_code == 1
assert "Quantization is currently only implemented for TensorFlow saved_model.pb and PyTorch model.pt models." \
in result.output
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
@pytest.mark.parametrize('model_name,model_file,framework',
[['bar', 'saved_model.pb', 'tensorflow'],
['foo', 'model.pt', 'pytorch']])
def test_quantize_bad_model_dir(model_name, model_file, framework):
"""
Verifies that quantize command fails if it's given a model directory with a model name that we don't support
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
model_dir = os.path.join(tmp_dir, model_name, '3')
dataset_dir = os.path.join(tmp_dir, 'data')
output_dir = os.path.join(tmp_dir, 'output')
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir)
# Create the model file
Path(os.path.join(model_dir, model_file)).touch()
# Call the quantize command with the model directory
result = runner.invoke(quantize,
["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])
# Verify that we got an error about the unsupported model for the framework
assert result.exit_code == 1
assert "An error occurred while getting the model" in result.output
assert "The specified model is not supported for {}".format(framework) in result.output
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
def test_quantize_model_dir_does_not_exist():
"""
Verifies that quantize command fails if the model directory does not exist
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
model_dir = os.path.join(tmp_dir, 'resnet_v1_50', '3')
dataset_dir = os.path.join(tmp_dir, 'data')
output_dir = os.path.join(tmp_dir, 'output')
try:
os.makedirs(dataset_dir)
# Call the quantize command with the model directory
result = runner.invoke(quantize,
["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])
# Verify that we got an error model directory not existing
assert result.exit_code == 2
assert "--model-dir" in result.output
assert "Directory '{}' does not exist".format(model_dir) in result.output
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
def test_quantize_dataset_dir_does_not_exist():
"""
Verifies that quantize command fails if the dataset directory does not exist
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
model_dir = os.path.join(tmp_dir, 'resnet_v1_50', '3')
dataset_dir = os.path.join(tmp_dir, 'data')
output_dir = os.path.join(tmp_dir, 'output')
try:
os.makedirs(model_dir)
# Call the quantize command with the model directory
result = runner.invoke(quantize,
["--model-dir", model_dir, "--dataset_dir", dataset_dir, "--output-dir", output_dir])
# Verify that we got an error dataset directory not existing
assert result.exit_code == 2
assert "--dataset-dir" in result.output
assert "Directory '{}' does not exist".format(dataset_dir) in result.output
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
def test_quantize_output_dir(mock_get_model, mock_load_dataset):
"""
Verifies that quantize command increments the output directory for the quantized model each time the quantization
command is called
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
model_name = 'resnet_v1_50'
model_dir = os.path.join(tmp_dir, model_name, '3')
dataset_dir = os.path.join(tmp_dir, 'data')
output_dir = os.path.join(tmp_dir, 'output')
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir)
Path(os.path.join(model_dir, 'saved_model.pb')).touch()
model_mock = MagicMock()
data_mock = MagicMock()
model_mock.use_case = "image_classification"
data_mock.use_case = "image_classification"
mock_get_model.return_value = model_mock
mock_load_dataset.return_value = data_mock
for i in range(1, 5):
# Call the quantize command
result = runner.invoke(quantize,
["--model-dir", model_dir, "--dataset_dir", dataset_dir,
"--output-dir", output_dir])
assert result.exit_code == 0
# Check for an expected quantization output dir with the folder number incrementing
expected_quantize_dir = os.path.join(output_dir, "quantize", model_name, str(i))
model_mock.quantize.called_once_with(model_dir, expected_quantize_dir)
model_mock.reset_mock()
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
class TestQuantizationArgs:
"""
Class for tests that are testing bad inputs for quntization args with generic folders for the model dir,
dataset dir, and output dir.
"""
def setup_class(self):
self._runner = CliRunner()
self._tmp_dir = tempfile.mkdtemp()
self._model_dir = os.path.join(self._tmp_dir, 'resnet_v1_50', '3')
self._dataset_dir = os.path.join(self._tmp_dir, 'data')
self._output_dir = os.path.join(self._tmp_dir, 'output')
def setup_method(self):
for new_dir in [self._model_dir, self._dataset_dir]:
if not os.path.exists(new_dir):
os.makedirs(new_dir)
def teardown_method(self):
if os.path.exists(self._tmp_dir):
shutil.rmtree(self._tmp_dir)
def teardown_class(self):
if os.path.exists(self._tmp_dir):
shutil.rmtree(self._tmp_dir)
@pytest.mark.common
@pytest.mark.parametrize('max_trials',
[-1, -5, 'foo'])
def test_quantize_invalid_max_trials(self, max_trials):
"""
Verifies that quantize command fails if the max trials is invalid (should be an integer > 0)
"""
# Create the model file
Path(os.path.join(self._model_dir, 'saved_model.pt')).touch()
# Call the quantize command with the model directory
result = self._runner.invoke(quantize,
["--model-dir", self._model_dir,
"--dataset_dir", self._dataset_dir,
"--output-dir", self._output_dir,
"--max-trials", max_trials])
assert result.exit_code == 2
assert "Invalid value for '--max-trials'" in result.output
@pytest.mark.common
@pytest.mark.parametrize('timeout', [-1, -5, 'foo'])
def test_quantize_invalid_timeout(self, timeout):
"""
Verifies that quantize command fails if the timeout is invalid (should be an integer >= 0)
"""
# Create the model file
Path(os.path.join(self._model_dir, 'saved_model.pt')).touch()
# Call the quantize command with the model directory
result = self._runner.invoke(quantize,
["--model-dir", self._model_dir,
"--dataset_dir", self._dataset_dir,
"--output-dir", self._output_dir,
"--timeout", timeout])
assert result.exit_code == 2
assert "Invalid value for '--timeout'" in result.output
@pytest.mark.common
@pytest.mark.parametrize('accuracy_criterion',
[1.3, -5, 'foo'])
def test_quantize_invalid_accuracy_criterion(self, accuracy_criterion):
"""
Verifies quantize command fails if the accuracy criterion value is invalid (should be a float between 0 and 1.0)
"""
# Create the model file
Path(os.path.join(self._model_dir, 'saved_model.pt')).touch()
# Call the quantize command with the model directory
result = self._runner.invoke(quantize,
["--model-dir", self._model_dir,
"--dataset_dir", self._dataset_dir,
"--output-dir", self._output_dir,
"--accuracy-criterion", accuracy_criterion])
assert result.exit_code == 2
assert "Invalid value for '--accuracy-criterion'" in result.output
|