File size: 23,067 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import os
import pytest
import shutil
import tempfile
import numpy as np


from tlt.datasets import dataset_factory
from tlt.models import model_factory
from tlt.utils.file_utils import download_and_extract_tar_file
from unittest.mock import MagicMock, patch

from tlt.datasets.image_classification.image_classification_dataset import ImageClassificationDataset

# This is necessary to protect from import errors when testing in a tensorflow only environment
keras_env = True

try:
    from tensorflow import keras
except ModuleNotFoundError:
    print("WARNING: Unable to import Keras. Tensorflow may not be installed")
    keras_env = False


@pytest.mark.integration
@pytest.mark.tensorflow
@pytest.mark.parametrize('model_name,dataset_name,train_accuracy,retrain_accuracy,extra_layers,correct_num_layers,'
                         'test_optimization',
                         [['efficientnet_b0', 'tf_flowers', 0.3125, 0.53125, None, 2, False],
                          ['resnet_v1_50', 'tf_flowers', 0.40625, 0.59375, None, 2, True],
                          ['efficientnet_b0', 'tf_flowers', 0.8125, 0.96875, [1024, 512], 4, False],
                          ['ResNet50', 'tf_flowers', 0.34375, 0.625, None, 4, True]])
def test_tf_image_classification(model_name, dataset_name, train_accuracy, retrain_accuracy, extra_layers,
                                 correct_num_layers, test_optimization):
    """
    Tests basic transfer learning functionality for TensorFlow image classification models using TF Datasets
    """
    framework = 'tensorflow'
    use_case = 'image_classification'
    output_dir = tempfile.mkdtemp()

    # Get the dataset
    dataset = dataset_factory.get_dataset('/tmp/data', use_case, framework, dataset_name,
                                          'tf_datasets', split=["train[:5%]"], seed=10, shuffle_files=False)

    # Get the model
    model = model_factory.get_model(model_name, framework)

    # Preprocess the dataset
    dataset.preprocess(model.image_size, 32, preprocessor=model.preprocessor)
    dataset.shuffle_split(shuffle_files=False)

    # Evaluate before training
    pretrained_metrics = model.evaluate(dataset)
    assert len(pretrained_metrics) > 0

    # Train
    history = model.train(dataset, output_dir=output_dir, epochs=1, shuffle_files=False, seed=10, do_eval=False,
                          extra_layers=extra_layers)
    assert history is not None
    np.testing.assert_almost_equal(history['acc'], [train_accuracy])
    assert len(model._model.layers) == correct_num_layers

    # Verify that checkpoints were generated
    checkpoint_dir = os.path.join(output_dir, "{}_checkpoints".format(model_name))
    assert os.path.isdir(checkpoint_dir)
    assert len(os.listdir(checkpoint_dir))

    # Evaluate
    trained_metrics = model.evaluate(dataset)
    assert trained_metrics[0] <= pretrained_metrics[0]  # loss
    assert trained_metrics[1] >= pretrained_metrics[1]  # accuracy

    # Predict with a batch
    images, labels = dataset.get_batch()
    predictions = model.predict(images)
    assert len(predictions) == 32
    probabilities = model.predict(images, return_type='probabilities')
    assert probabilities.shape == (32, 5)  # tf_flowers has 5 classes
    np.testing.assert_almost_equal(np.sum(probabilities), np.float32(32), decimal=4)

    # Export the saved model
    saved_model_dir = model.export(output_dir)
    assert os.path.isdir(saved_model_dir)
    assert os.path.isfile(os.path.join(saved_model_dir, "saved_model.pb"))

    # Reload the saved model
    reload_model = model_factory.get_model(model_name, framework)
    reload_model.load_from_directory(saved_model_dir)

    # Evaluate
    reload_metrics = reload_model.evaluate(dataset)
    np.testing.assert_almost_equal(reload_metrics, trained_metrics)

    # Optimize the graph
    if test_optimization:
        inc_output_dir = os.path.join(output_dir, "optimized")
        os.makedirs(inc_output_dir, exist_ok=True)
        model.optimize_graph(inc_output_dir)
        assert os.path.isfile(os.path.join(inc_output_dir, "saved_model.pb"))

    # Retrain from checkpoints and verify that we have better accuracy than the original training
    retrain_model = model_factory.load_model(model_name, saved_model_dir, framework, use_case)
    retrain_history = retrain_model.train(dataset, output_dir=output_dir, epochs=1, initial_checkpoints=checkpoint_dir,
                                          shuffle_files=False, seed=10, do_eval=False)
    np.testing.assert_almost_equal(retrain_history['acc'], [retrain_accuracy])

    # Delete the temp output directory
    if os.path.exists(output_dir) and os.path.isdir(output_dir):
        shutil.rmtree(output_dir)


# This is necessary to protect from import errors when testing in a tensorflow only environment
if keras_env:
    @pytest.mark.integration
    @pytest.mark.tensorflow
    def test_tf_image_classification_custom_model():
        """
        Tests basic transfer learning functionality for a custom TensorFlow image classification model using TF Datasets
        """
        framework = 'tensorflow'
        use_case = 'image_classification'
        output_dir = tempfile.mkdtemp()
        model_name = 'custom_model'
        image_size = 227

        # Get the dataset
        dataset = dataset_factory.get_dataset('/tmp/data', use_case, framework, 'tf_flowers',
                                              'tf_datasets', split=["train[:5%]"], shuffle_files=False)

        # Define a custom model
        alexnet = keras.models.Sequential([
            keras.layers.Conv2D(filters=96, kernel_size=(11, 11), strides=(4, 4), activation='relu',
                                input_shape=(image_size, image_size, 3)),
            keras.layers.BatchNormalization(),
            keras.layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2)),
            keras.layers.Conv2D(filters=256, kernel_size=(5, 5), strides=(1, 1), activation='relu', padding="same"),
            keras.layers.BatchNormalization(),
            keras.layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2)),
            keras.layers.Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation='relu', padding="same"),
            keras.layers.BatchNormalization(),
            keras.layers.Conv2D(filters=384, kernel_size=(3, 3), strides=(1, 1), activation='relu', padding="same"),
            keras.layers.BatchNormalization(),
            keras.layers.Conv2D(filters=256, kernel_size=(3, 3), strides=(1, 1), activation='relu', padding="same"),
            keras.layers.BatchNormalization(),
            keras.layers.MaxPool2D(pool_size=(3, 3), strides=(2, 2)),
            keras.layers.Flatten(),
            keras.layers.Dense(4096, activation='relu'),
            keras.layers.Dropout(0.5),
            keras.layers.Dense(4096, activation='relu'),
            keras.layers.Dropout(0.5),
            keras.layers.Dense(5, activation='softmax')
        ])

        model = model_factory.load_model(model_name=model_name, model=alexnet, framework=framework, use_case=use_case)
        assert model.num_classes == 5
        assert model._image_size == 227

        # Preprocess the dataset
        dataset.preprocess(image_size, 32)
        dataset.shuffle_split(seed=10)

        # Train
        history = model.train(dataset, output_dir=output_dir, epochs=1, shuffle_files=False, seed=10)
        assert history is not None

        # Verify that checkpoints were generated
        checkpoint_dir = os.path.join(output_dir, "{}_checkpoints".format(model_name))
        assert os.path.isdir(checkpoint_dir)
        assert len(os.listdir(checkpoint_dir))

        # Evaluate
        trained_metrics = model.evaluate(dataset)
        assert trained_metrics is not None

        # Predict with a batch
        images, labels = dataset.get_batch()
        predictions = model.predict(images)
        assert len(predictions) == 32
        probabilities = model.predict(images, return_type='probabilities')
        assert probabilities.shape == (32, 5)  # tf_flowers has 5 classes
        np.testing.assert_almost_equal(np.sum(probabilities), np.float32(32), decimal=4)

        # Export the saved model
        saved_model_dir = model.export(output_dir)
        assert os.path.isdir(saved_model_dir)
        assert os.path.isfile(os.path.join(saved_model_dir, "saved_model.pb"))

        # Reload the saved model
        reload_model = model_factory.load_model(model_name, saved_model_dir, framework, use_case)

        # Evaluate
        reload_metrics = reload_model.evaluate(dataset)
        np.testing.assert_almost_equal(reload_metrics, trained_metrics)

        # Retrain from checkpoints and verify that we have better accuracy than the original training
        retrain_model = model_factory.load_model(model_name, saved_model_dir, framework, use_case)
        retrain_history = retrain_model.train(dataset, output_dir=output_dir, epochs=1,
                                              initial_checkpoints=checkpoint_dir, shuffle_files=False, seed=10)
        assert retrain_history is not None

        # Delete the temp output directory
        if os.path.exists(output_dir) and os.path.isdir(output_dir):
            shutil.rmtree(output_dir)


@pytest.mark.integration
@pytest.mark.tensorflow
class TestImageClassificationCustomDataset:
    """
    Tests for TensorFlow image classification using a custom dataset using the flowers dataset
    """
    @classmethod
    def setup_class(cls):
        temp_dir = tempfile.mkdtemp(dir='/tmp/data')
        custom_dataset_path = os.path.join(temp_dir, "flower_photos")

        if not os.path.exists(custom_dataset_path):
            download_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
            download_and_extract_tar_file(download_url, temp_dir)

        cls._output_dir = tempfile.mkdtemp()
        cls._temp_dir = temp_dir
        cls._dataset_dir = custom_dataset_path

    @classmethod
    def teardown_class(cls):
        # remove directories
        for dir in [cls._output_dir, cls._temp_dir]:
            if os.path.exists(dir):
                print("Deleting test directory:", dir)
                shutil.rmtree(dir)

    @pytest.mark.parametrize('model_name,train_accuracy,retrain_accuracy,test_inc',
                             [['efficientnet_b0', 0.9333333, 1.0, False],
                              ['resnet_v1_50', 1.0, 1.0, True],
                              ['resnet_v2_50', 1.0, 1.0, False]])
    def test_custom_dataset_workflow(self, model_name, train_accuracy, retrain_accuracy, test_inc):
        """
        Tests the full workflow for TF image classification using a custom dataset
        """
        framework = 'tensorflow'
        use_case = 'image_classification'

        # Get the dataset
        dataset = dataset_factory.load_dataset(self._dataset_dir, use_case=use_case, framework=framework,
                                               shuffle_files=False)
        assert ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] == dataset.class_names

        # Get the model
        model = model_factory.get_model(model_name, framework)

        # Preprocess the dataset and split to get small subsets for training and validation
        dataset.shuffle_split(train_pct=0.1, val_pct=0.1, shuffle_files=False)
        dataset.preprocess(model.image_size, 32, preprocessor=model.preprocessor)

        # Train for 1 epoch
        history = model.train(dataset, output_dir=self._output_dir, epochs=1, shuffle_files=False, seed=10,
                              do_eval=False)
        assert history is not None
        np.testing.assert_almost_equal(history['acc'], [train_accuracy])

        # Verify that checkpoints were generated
        checkpoint_dir = os.path.join(self._output_dir, "{}_checkpoints".format(model_name))
        assert os.path.isdir(checkpoint_dir)
        assert len(os.listdir(checkpoint_dir))

        # Evaluate
        model.evaluate(dataset)

        # Predict with a batch
        images, labels = dataset.get_batch()
        predictions = model.predict(images)
        assert len(predictions) == 32

        # export the saved model
        saved_model_dir = model.export(self._output_dir)
        assert os.path.isdir(saved_model_dir)
        assert os.path.isfile(os.path.join(saved_model_dir, "saved_model.pb"))

        # Reload the saved model
        reload_model = model_factory.get_model(model_name, framework)
        reload_model.load_from_directory(saved_model_dir)

        # Evaluate
        metrics = reload_model.evaluate(dataset)
        assert len(metrics) > 0

        # Retrain from checkpoints and verify that we have better accuracy than the original training
        retrain_model = model_factory.get_model(model_name, framework)
        retrain_history = retrain_model.train(dataset, output_dir=self._output_dir, epochs=1,
                                              initial_checkpoints=checkpoint_dir, shuffle_files=False, seed=10,
                                              do_eval=False)
        np.testing.assert_almost_equal(retrain_history['acc'], [retrain_accuracy])

        # Test benchmarking, quantization
        if test_inc:
            inc_output_dir = os.path.join(self._output_dir, "quantized", model_name)
            os.makedirs(inc_output_dir)
            model.quantize(inc_output_dir, dataset=dataset)
            assert os.path.exists(os.path.join(inc_output_dir, "saved_model.pb"))
            model.benchmark(saved_model_dir=inc_output_dir, dataset=dataset)


@pytest.mark.integration
@pytest.mark.tensorflow
@pytest.mark.parametrize('model_name,dataset_name,epochs,learning_rate,do_eval,early_stopping,lr_decay,accuracy,\
                          val_accuracy,lr_final',
                         [['efficientnet_b0', 'tf_flowers', 4, 0.001, False, False, False, 0.9, None, 0.001],
                          ['efficientnet_b0', 'tf_flowers', 4, 0.001, True, False, False, 0.9, 0.8478260, 0.001],
                          ['efficientnet_b0', 'tf_flowers', 4, 0.001, True, False, True, 0.9, 0.8478260, 0.001],
                          ['efficientnet_b0', 'tf_flowers', 4, 0.001, False, False, True, 0.9, None, 0.001],
                          ['efficientnet_b0', 'tf_flowers', 16, 0.001, True, False, True, 1.0, 0.8695651, 1.0000e-03],
                          ['efficientnet_b0', 'tf_flowers', 25, 0.001, True, True, False, 1.0, 0.8695651, 0.0002]])
def test_tf_image_classification_with_lr_options(model_name, dataset_name, epochs, learning_rate, do_eval,
                                                 early_stopping, lr_decay, accuracy, val_accuracy, lr_final):
    """
    Tests learning rate options
    """
    framework = 'tensorflow'
    use_case = 'image_classification'
    output_dir = tempfile.mkdtemp()

    # Get the dataset
    dataset = dataset_factory.get_dataset('/tmp/data', use_case, framework, dataset_name,
                                          'tf_datasets', split=["train[:5%]"], shuffle_files=False)

    # Get the model
    model = model_factory.get_model(model_name, framework)
    model.learning_rate = learning_rate
    assert model.learning_rate == learning_rate

    # Preprocess the dataset
    dataset.shuffle_split(shuffle_files=False)
    dataset.preprocess(model.image_size, 32)

    # Train
    history = model.train(dataset, output_dir=output_dir, epochs=epochs, shuffle_files=False, seed=10, do_eval=do_eval,
                          early_stopping=early_stopping, lr_decay=lr_decay)

    assert history is not None
    np.testing.assert_almost_equal(history['acc'][-1], accuracy)
    if val_accuracy:
        np.testing.assert_almost_equal(history['val_acc'][-1], val_accuracy)
    else:
        assert 'val_acc' not in history
    if do_eval and lr_decay:
        assert history['lr'][-1] <= np.float32(lr_final)
    else:
        assert 'lr' not in history

    # Delete the temp output directory
    if os.path.exists(output_dir) and os.path.isdir(output_dir):
        shutil.rmtree(output_dir)


@pytest.mark.tensorflow
@pytest.mark.parametrize('add_aug',
                         ['rotate',
                          'zoom',
                          'hflip'])
def test_train_add_aug_mock(add_aug):
    """
    Tests basic add augmentation functionality for TensorFlow image classification models using mock objects
    """
    model = model_factory.get_model('efficientnet_b0', 'tensorflow')

    with patch('tlt.models.image_classification.tfhub_image_classification_model.'
               'TFHubImageClassificationModel._get_hub_model') as mock_get_hub_model:
        mock_dataset = MagicMock()
        mock_dataset.__class__ = ImageClassificationDataset
        print(mock_dataset.__class__)
        mock_dataset.validation_subset = [1, 2, 3]

        mock_dataset.class_names = ['a', 'b', 'c']
        mock_model = MagicMock()
        expected_return_value = {"result": True}
        mock_history = MagicMock()
        mock_history.history = expected_return_value

        def mock_fit(dataset, epochs, shuffle, callbacks, validation_data=None):
            assert dataset is not None
            assert isinstance(epochs, int)
            assert isinstance(shuffle, bool)
            assert len(callbacks) > 0

            return mock_history

        mock_model.fit = mock_fit
        mock_get_hub_model.return_value = mock_model

        # add basic preprocessing with add aug set to 'zoom'
        mock_dataset.preprocess(model.image_size, 32, add_aug=[add_aug])
        mock_dataset.shuffle_split(shuffle_files=False)

        # Test train without eval
        return_val = model.train(mock_dataset, output_dir="/tmp/output", do_eval=False)
        assert return_val == expected_return_value


@pytest.mark.tensorflow
def test_custom_callback():
    """
    Tests passing custom callbacks to the TensorFlow image classification train, evaluate, and predict functions.
    """
    model = model_factory.get_model('efficientnet_b0', 'tensorflow')

    with patch('tlt.models.image_classification.tfhub_image_classification_model.'
               'TFHubImageClassificationModel._get_hub_model') as mock_get_hub_model:
        mock_dataset = MagicMock()
        mock_dataset.__class__ = ImageClassificationDataset
        mock_dataset.validation_subset = [1, 2, 3]

        mock_dataset.class_names = ['a', 'b', 'c']
        mock_model = MagicMock()
        expected_return_value = {"result": True}
        mock_history = MagicMock()
        mock_history.history = expected_return_value

        class TestCallbackMethod(keras.callbacks.Callback):
            pass

        test_callback = TestCallbackMethod()

        def mock_fit(dataset, epochs, shuffle, callbacks, validation_data=None):
            # We should have more than one callback since TLT them and we added a custom one
            assert isinstance(callbacks, list)
            assert len(callbacks) > 1

            # We should have one callback that's our test callback
            assert (len([x for x in callbacks if x.__class__.__name__ == 'TestCallbackMethod']) == 1)

            return mock_history

        def mock_evaluate(dataset, callbacks=None):
            assert isinstance(callbacks, list)
            assert len(callbacks) == 1
            assert (len([x for x in callbacks if x.__class__.__name__ == 'TestCallbackMethod']) == 1)
            return [.98, 0.13]

        def mock_predict(input_samples, callbacks=None):
            assert isinstance(callbacks, list)
            assert len(callbacks) == 1
            assert (len([x for x in callbacks if x.__class__.__name__ == 'TestCallbackMethod']) == 1)
            return [1.0, 0.5]

        mock_model.fit.side_effect = mock_fit
        mock_model.evaluate.side_effect = mock_evaluate
        mock_model.predict.side_effect = mock_predict
        mock_get_hub_model.return_value = mock_model

        # Test custom callback as a single item, list, or tuple
        custom_callbacks = [test_callback, [test_callback], (test_callback)]

        for custom_callback in custom_callbacks:
            # Test train with custom callback
            return_val = model.train(mock_dataset, output_dir="/tmp/output", do_eval=False, callbacks=custom_callback)
            assert return_val == expected_return_value
            mock_model.fit.assert_called_once()
            mock_model.fit.reset_mock()

            # Test evaluate with custom callback
            model.evaluate(mock_dataset, callbacks=custom_callback)
            mock_model.evaluate.assert_called_once()
            mock_model.evaluate.reset_mock()

            # Test predict with custom callback
            model.predict([], callbacks=custom_callback)
            mock_model.predict.assert_called_once()
            mock_model.predict.reset_mock()


@pytest.mark.tensorflow
@patch('tlt.models.image_classification.tfhub_image_classification_model.TFHubImageClassificationModel._get_hub_model')
def test_invalid_callback_types(mock_get_hub_model):
    """
    Tests passing custom callbacks of the wrong type to train, predict, and evaluate
    """
    model = model_factory.get_model('efficientnet_b0', 'tensorflow')

    mock_dataset = MagicMock()
    mock_dataset.__class__ = ImageClassificationDataset
    mock_dataset.validation_subset = [1, 2, 3]

    mock_dataset.class_names = ['a', 'b', 'c']
    mock_model = MagicMock()
    expected_return_value = {"result": True}
    mock_history = MagicMock()
    mock_history.history = expected_return_value

    class TestCallbackMethod(keras.callbacks.Callback):
        pass

    good_callback = TestCallbackMethod()
    bad_callback = 1

    mock_model.fit = MagicMock()
    mock_model.evaluate = MagicMock()
    mock_model.predict = MagicMock()
    mock_get_hub_model.return_value = mock_model

    with pytest.raises(TypeError, match="Callbacks must be tf.keras.callbacks.Callback instances"):
        model.train(mock_dataset, output_dir="/tmp/output", do_eval=False, callbacks=[good_callback, bad_callback])

    with pytest.raises(TypeError, match="Callbacks must be tf.keras.callbacks.Callback instances"):
        model.evaluate(mock_dataset, callbacks=[good_callback, bad_callback])

    with pytest.raises(TypeError, match="Callbacks must be tf.keras.callbacks.Callback instances"):
        model.predict([], callbacks=[good_callback, bad_callback])