File size: 5,377 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import os
import shutil
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from collections import defaultdict


def copy_files_src_to_tgt(samples, fns_dict, src_folder, tgt_folder):
    for sample in samples:
        files_to_copy = fns_dict.get(sample)
        for _file in files_to_copy:
            src_fn = os.path.join(src_folder, _file)
            tgt_fn = os.path.join(tgt_folder, _file)
            shutil.copy2(src_fn, tgt_fn)


def split_images(src_folder, tgt_folder):
    labels = os.listdir(src_folder)
    print("Number of labels = ", len(labels))
    print("Labels are: \n", labels)
    for label in labels:
        fns = os.listdir(os.path.join(src_folder, label))
        fns.sort()
        fns_root = ['_'.join(x.split('_')[:2]) for x in fns]
        # Convert list of tuples to dictionary value lists
        print("\nCreating default dict for stratifying the subject in {}.".format(label))
        fns_dict = defaultdict(list)
        for i, j in zip(fns_root, fns):
            fns_dict[i].append(j)
        train_samples, test_samples = train_test_split(list(fns_dict.keys()), test_size=0.2, random_state=100)

        src_dir = os.path.join(src_folder, label)
        tgt_dir = os.path.join(tgt_folder, 'train', label)
        os.makedirs(tgt_dir, exist_ok=True)
        copy_files_src_to_tgt(train_samples, fns_dict, src_dir, tgt_dir)

        tgt_dir = os.path.join(tgt_folder, 'test', label)
        os.makedirs(tgt_dir, exist_ok=True)
        copy_files_src_to_tgt(test_samples, fns_dict, src_dir, tgt_dir)

        print("Done splitting the files for label = {}\n".format(label))
    print("Done splitting the data. Output data is here: ", tgt_folder)


def get_subject_id(image_name):
    image_name = image_name.split("/")[-1]
    patient_id = "".join(image_name.split("_")[:2])[1:]
    return patient_id


def create_patient_id_list(image_data_folder, folder):
    folder_pth = os.path.join(folder, image_data_folder)
    patient_id_list = []
    for fldr in os.listdir(folder_pth):
        for f in os.listdir(os.path.join(folder_pth, fldr)):
            patient_id_list.append(get_subject_id(f))

    return np.unique(patient_id_list)


def read_annotation_file(
    folder,
    file_name,
    label_column,
    data_column,
    patient_id,
    patient_id_list,
    image_data_folder
):
    df_path = os.path.join(folder, file_name)
    df = pd.read_csv(df_path)
    label_map, reverse_label_map = label2map(df, label_column)

    if patient_id_list is not None:
        df = df[df[patient_id].isin(patient_id_list)]
    else:
        image_name_list = []
        for label in os.listdir(image_data_folder):
            image_name_list.extend(os.listdir(os.path.join(image_data_folder, label)))
        df = df[df[patient_id].isin(np.unique([get_subject_id(i) for i in image_name_list]))]

    df_new = pd.DataFrame(columns=[label_column, data_column, patient_id])
    for i in df[patient_id].unique():
        annotation = " ".join(df[df[patient_id].isin([i])][data_column].to_list())
        temp_labels = df[df[patient_id] == i][label_column].unique()
        if len(temp_labels) == 1:
            df_new.loc[len(df_new)] = [temp_labels[0], annotation, i]
        else:
            if patient_id_list is not None:
                # this is the case only shows for inference
                # label assigne as a place holder
                df_new.loc[len(df_new)] = ["Normal", annotation, i]
            else:
                Warning("Conflict in labelling ....")

    return df_new, label_map, reverse_label_map


def label2map(df, label_column):
    label_map, reverse_label_map = {}, {}
    for i, v in enumerate(df[label_column].unique().tolist()):
        label_map[v] = i
        reverse_label_map[i] = v

    return label_map, reverse_label_map


def create_train_test_set(df, patient_id, patient_id_list):
    train_label, test_label = train_test_split(
        patient_id_list, test_size=0.33, random_state=42
    )

    df_test = df[df[patient_id].isin(test_label)]
    df_train = df[df[patient_id].isin(train_label)]

    return df_train, df_test


def split_annotation(folder, file_name, image_data_folder):
    label_column = "label"
    data_column = "symptoms"
    patient_id = "Patient_ID"
    patient_id_list = None

    df, label_map, reverse_label_map = read_annotation_file(
        folder,
        file_name,
        label_column,
        data_column,
        patient_id,
        patient_id_list,
        image_data_folder
    )

    patient_id_list = create_patient_id_list(image_data_folder, folder)
    df_train, df_test = create_train_test_set(df, patient_id, patient_id_list)

    return df_train