Spaces:
Configuration error
Configuration error
File size: 12,021 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import os
import pytest
import shutil
import tempfile
from click.testing import CliRunner
from pathlib import Path
from unittest.mock import MagicMock, patch
from tlt.tools.cli.commands.eval import eval
from tlt.utils.types import FrameworkType
@pytest.mark.common
@pytest.mark.parametrize('model_name,framework',
[['efficientnet_b0', FrameworkType.TENSORFLOW],
['resnet50', FrameworkType.PYTORCH]])
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
@patch("inspect.getfullargspec")
def test_eval_preprocess_with_image_size(mock_inspect, mock_load_dataset, mock_get_model, model_name, framework):
"""
Tests the eval command with a dataset preprocessing method that has an image_size. Actual calls for the model and
dataset are mocked out. The test verifies that the proper args are used for calling preprocess()
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
dataset_dir = os.path.join(tmp_dir, 'data')
model_dir = os.path.join(tmp_dir, 'model')
dummy_image_size = 100
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir)
# Create dummy model file
if framework == FrameworkType.TENSORFLOW:
Path(os.path.join(model_dir, 'saved_model.pb')).touch()
elif framework == FrameworkType.PYTORCH:
Path(os.path.join(model_dir, 'model.pt')).touch()
model_mock = MagicMock()
model_mock.image_size = dummy_image_size
data_mock = MagicMock()
# Test where the preprocessing command will have an image size
inspect_mock = MagicMock()
inspect_mock.args = ['image_size', 'batch_size']
mock_inspect.return_value = inspect_mock
mock_get_model.return_value = model_mock
mock_load_dataset.return_value = data_mock
# Call the eval command
result = runner.invoke(eval, ["--model-dir", model_dir, "--dataset_dir", dataset_dir])
# Verify that the expected calls were made
mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework)
assert mock_get_model.called
assert data_mock.shuffle_split.called
assert model_mock.evaluate.called
# Verify that preprocess was called with an image size
data_mock.preprocess.assert_called_once_with(image_size=dummy_image_size, batch_size=32)
# Verify that the eval command exit code is successful
assert result.exit_code == 0
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
@pytest.mark.parametrize('model_name,framework',
[['google/bert_uncased_L-10_H-128_A-2', FrameworkType.TENSORFLOW],
['bert_en_uncased_L-12_H-768_A-12', FrameworkType.PYTORCH]])
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
@patch("inspect.getfullargspec")
def test_eval_preprocess_without_image_size(mock_inspect, mock_load_dataset, mock_get_model, model_name, framework):
"""
Tests the eval command with a dataset preprocessing method that just has a batch size arg. Actual calls for the
model and dataset are mocked out. The test verifies that the proper args are used for calling preprocess()
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
dataset_dir = os.path.join(tmp_dir, 'data')
model_dir = os.path.join(tmp_dir, 'model')
dummy_image_size = 100
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir)
# Create dummy model file
if framework == FrameworkType.TENSORFLOW:
Path(os.path.join(model_dir, 'saved_model.pb')).touch()
elif framework == FrameworkType.PYTORCH:
Path(os.path.join(model_dir, 'model.pt')).touch()
model_mock = MagicMock()
model_mock.image_size = dummy_image_size
data_mock = MagicMock()
# Test where the preprocessing command just has a batch_size arg
inspect_mock = MagicMock()
inspect_mock.args = ['batch_size']
mock_inspect.return_value = inspect_mock
mock_get_model.return_value = model_mock
mock_load_dataset.return_value = data_mock
# Call the eval command
result = runner.invoke(eval, ["--model-dir", model_dir, "--dataset_dir", dataset_dir])
# Verify that the eval command exit code is successful
assert result.exit_code == 0
# Verify that the expected calls were made
mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework)
assert mock_get_model.called
assert data_mock.shuffle_split.called
assert model_mock.evaluate.called
# Verify that preprocess was called with just batch size
data_mock.preprocess.assert_called_once_with(batch_size=32)
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
@pytest.mark.parametrize('provided_model_name,model_dir,expected_model_name,framework',
[['mymodel/name', 'model/abc', 'mymodel/name', FrameworkType.TENSORFLOW],
['', 'bert_en_uncased_L-12_H-768_A-12/3', 'bert_en_uncased_L-12_H-768_A-12',
FrameworkType.PYTORCH],
['test', 'bert_en_uncased_L-12_H-768_A-12/3', 'test',
FrameworkType.PYTORCH]
])
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.load_dataset")
def test_eval_model_name(mock_load_dataset, mock_get_model, provided_model_name, model_dir,
expected_model_name, framework):
"""
Tests the eval command with and without providing a model name to verify that when a model name is provided, that
is what's used, and when a model name is not provided, we use the model_dir folder as the model name.
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
dataset_dir = os.path.join(tmp_dir, 'data')
model_dir = os.path.join(tmp_dir, model_dir)
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir)
# Create dummy model file
if framework == FrameworkType.TENSORFLOW:
Path(os.path.join(model_dir, 'saved_model.pb')).touch()
elif framework == FrameworkType.PYTORCH:
Path(os.path.join(model_dir, 'model.pt')).touch()
model_mock = MagicMock()
data_mock = MagicMock()
mock_get_model.return_value = model_mock
mock_load_dataset.return_value = data_mock
# Call the eval command
eval_params = ["--model-dir", model_dir, "--dataset_dir", dataset_dir]
if provided_model_name:
eval_params += ["--model-name", provided_model_name]
result = runner.invoke(eval, eval_params)
# Verify that the expected calls were made
mock_get_model.assert_called_once_with(expected_model_name, framework)
mock_load_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework)
assert model_mock.evaluate.called
# Verify that the eval command exit code is successful
assert result.exit_code == 0
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
@pytest.mark.common
@pytest.mark.parametrize('model_name,framework,dataset_name,dataset_catalog',
[['efficientnet_b0', FrameworkType.TENSORFLOW, 'tf_flowers', 'tf_datasets'],
['resnet50', FrameworkType.PYTORCH, 'cifar10', 'torchvision']])
@patch("tlt.models.model_factory.get_model")
@patch("tlt.datasets.dataset_factory.get_dataset")
def test_eval_dataset_catalog(mock_get_dataset, mock_get_model, model_name, framework, dataset_name, dataset_catalog):
"""
Tests the eval command a named dataset and verifies that get_dataset is called (vs load_dataset, which is used
for custom dataset directories in other tests).
"""
runner = CliRunner()
tmp_dir = tempfile.mkdtemp()
dataset_dir = os.path.join(tmp_dir, 'data')
model_dir = os.path.join(tmp_dir, 'model')
try:
for new_dir in [model_dir, dataset_dir]:
os.makedirs(new_dir)
# Create dummy model file
if framework == FrameworkType.TENSORFLOW:
Path(os.path.join(model_dir, 'saved_model.pb')).touch()
elif framework == FrameworkType.PYTORCH:
Path(os.path.join(model_dir, 'model.pt')).touch()
# Setup mocks
model_mock = MagicMock()
data_mock = MagicMock()
mock_get_model.return_value = model_mock
mock_get_dataset.return_value = data_mock
# Call the eval command
result = runner.invoke(eval,
["--model-dir", str(model_dir), "--model-name", model_name, "--dataset_dir", dataset_dir,
"--dataset-name", dataset_name, "--dataset-catalog", dataset_catalog])
# Verify that the expected calls were made
mock_get_model.assert_called_once_with(model_name, framework)
mock_get_dataset.assert_called_once_with(dataset_dir, model_mock.use_case, model_mock.framework,
dataset_name, dataset_catalog)
# Verify that the evaluate command exit code is successful
assert model_mock.evaluate.called
assert result.exit_code == 0
finally:
if os.path.exists(tmp_dir):
shutil.rmtree(tmp_dir)
class TestEvalArgs:
"""
Class for tests that are testing bad inputs for evaluation
"""
def setup_class(self):
self._runner = CliRunner()
self._tmp_dir = tempfile.mkdtemp()
self._dataset_dir = os.path.join(self._tmp_dir, 'data')
self._model_dir = os.path.join(self._tmp_dir, 'model')
def setup_method(self):
for new_dir in [self._model_dir, self._dataset_dir]:
if not os.path.exists(new_dir):
os.makedirs(new_dir)
Path(os.path.join(self._model_dir, 'saved_model.pb')).touch()
def teardown_method(self):
if os.path.exists(self._tmp_dir):
shutil.rmtree(self._tmp_dir)
def teardown_class(self):
if os.path.exists(self._tmp_dir):
shutil.rmtree(self._tmp_dir)
@pytest.mark.common
@pytest.mark.parametrize('dataset_catalog', ['foo', 'benchmark', '0'])
def test_eval_invalid_dataset_catalog(self, dataset_catalog):
"""
Verifies that eval command fails if the dataset catalog value is invalid
"""
result = self._runner.invoke(eval,
["--model-dir", self._model_dir,
"--dataset-dir", self._dataset_dir,
"--dataset-name", "foo",
"--dataset-catalog", dataset_catalog])
assert result.exit_code == 2
assert "Invalid value for '--dataset-catalog'" in result.output
assert "'{}' is not one of 'tf_datasets', 'torchvision', 'huggingface'".format(dataset_catalog) in result.output
|