Spaces:
Configuration error
Configuration error
File size: 9,405 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# Get Started
This is a guide for getting started with Intel® Transfer Learning Tool and will
walk you through the steps to check system requirements, install, and then run
the tool with a couple of examples showing no-code CLI and low-code API
approaches.
<p align="center"><b>Intel Transfer Learning Tool Get Started Flow</b></p>
<img alt="Intel Transfer Learning Tool Get Started Flow" title="Intel Transfer Learning Tool Get Started Flow" src="images/TLT-GSG_flow.svg" width="800">
## ① Check System Requirements
| Recommended Hardware | Precision |
| ---------------------------- | ---------- |
| Intel® 4th Gen Xeon® Scalable Performance processors | BF16 |
| Intel® 1st, 2nd, 3rd, and 4th Gen Xeon® Scalable Performance processors | FP32 |
| Resource | Minimum |
| ---------------------------- | ---------- |
| CPU Cores | 8 (16+ recommended) |
| RAM | 16 GB (24-32+ GB recommended) |
| Disk space | 10 GB minimum (can vary based on datasets downloaded) |
| Required Software |
| ------------------------- |
| Linux\* system (validated on Ubuntu\* 20.04/22.04 LTS) |
| Python (3.8, 3.9, or 3.10) |
| Pip |
| Conda or Python virtualenv |
| git (only required for advanced installation) |
## ② Install
1. **Install Dependencies**
Install required packages using:
```
sudo apt-get install build-essential python3-dev libgl1 libglib2.0-0
```
2. **Create and activate a Python3 virtual environment**
We encourage you to use a Python virtual environment (virtualenv or conda)
for consistent package management. There are two ways to do this:
a. Use `virtualenv`:
```
virtualenv -p python3 tlt_dev_venv
source tlt_dev_venv/bin/activate
```
b. Or use `conda`:
```
conda create --name tlt_dev_venv python=3.9
conda activate tlt_dev_venv
```
3. **Install Intel Transfer Learning Tool**
Use the Basic Installation instructions unless you plan on making code changes.
a. **Basic Installation**
```
pip install intel-transfer-learning-tool
```
b. **Advanced Installation**
Clone the repo:
```
git clone https://github.com/IntelAI/transfer-learning.git
cd transfer-learning
```
Then either do an editable install to avoid a rebuild and
install after each code change (preferred):
```
pip install --editable .
```
or build and install a wheel:
```
python setup.py bdist_wheel
pip install dist/intel_transfer_learning_tool-0.5.0-py3-none-any.whl
```
4. **Additional Feature-Specific Steps**
* For distributed/multinode training, follow these additional
[distributed training instructions](tlt/distributed/README.md).
5. **Verify Installation**
Verify that your installation was successful by using the following
command, which displays help information about the Intel Transfer Learning Tool:
```
tlt --help
```
## ③ Run the Intel Transfer Learning Tool
With the Intel Transfer Learning Tool, you can train AI models with TensorFlow or
PyTorch using either no-code CLI commands at a bash prompt, or low-code API
calls from a Python script. Both approaches provide the same opportunities for
training, evaluation, optimization, and benchmarking. With the CLI, no
programming experience is required, and you'll need basic Python knowledge to
use the API. Choose the approach that works best for you.
### Run Using the No-Code CLI
Let's continue from the previous step where you prepared the dataset, and train
a model using CLI commands. This example uses the CLI to train an image
classifier to identify different types of flowers. You can see a list of all
available image classifier models using the command:
```
tlt list models --use-case image_classification
```
**Train a Model**
In this example, we'll use the `tlt train` command to retrain the TensorFlow
ResNet50v1.5 model using a flowers dataset from the
[TensorFlow Datasets catalog](https://www.tensorflow.org/datasets/catalog/tf_flowers).
The `--dataset-dir` and `--output-dir` paths need to point to writable folders on your system.
```
# Use the follow environment variable setting to reduce the warnings and log output from TensorFlow
export TF_CPP_MIN_LOG_LEVEL="2"
tlt train -f tensorflow --model-name resnet_v1_50 --dataset-name tf_flowers --dataset-dir "/tmp/data-${USER}" --output-dir "/tmp/output-${USER}"
```
```
Model name: resnet_v1_50
Framework: tensorflow
Dataset name: tf_flowers
Training epochs: 1
Dataset dir: /tmp/data-user
Output directory: /tmp/output-user
...
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
keras_layer (KerasLayer) (None, 2048) 23561152
dense (Dense) (None, 5) 10245
=================================================================
Total params: 23,571,397
Trainable params: 10,245
Non-trainable params: 23,561,152
_________________________________________________________________
Checkpoint directory: /tmp/output-user/resnet_v1_50_checkpoints
86/86 [==============================] - 24s 248ms/step - loss: 0.4600 - acc: 0.8438
Saved model directory: /tmp/output-user/resnet_v1_50/1
```
After training completes, the `tlt train` command evaluates the model. The loss and
accuracy values are printed toward the end of the console output. The model is
exported to the output directory you specified in a numbered folder created for
each training run.
**Next Steps**
That ends this Get Started CLI example. As a next step, you can also follow the
[Beyond Get Started CLI Example](examples/cli/README.md) for a complete example
that includes evaluation, benchmarking, and quantization in the datasets.
Read about all the CLI commands in the [CLI reference](/cli.md).
Find more examples in our list of [Examples](examples/README.md).
### Run Using the Low-Code API
The following Python code example trains an image classification model with the TensorFlow
flowers dataset using API calls from Python. The model is
benchmarked and quantized to INT8 precision for improved inference performance.
You can run the API example using a Jupyter notebook. See the [notebook setup
instructions](/notebooks/setup.md) for more details for preparing the Jupyter
notebook environment.
```python
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from tlt.datasets import dataset_factory
from tlt.models import model_factory
from tlt.utils.types import FrameworkType, UseCaseType
username = os.getenv('USER', 'user')
# Specify a writable directory for the dataset to be downloaded
dataset_dir = '/tmp/data-{}'.format(username)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
# Specify a writeable directory for output (such as saved model files)
output_dir = '/tmp/output-{}'.format(username)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Get the model
model = model_factory.get_model(model_name="resnet_v1_50", framework=FrameworkType.TENSORFLOW)
# Download and preprocess the flowers dataset from the TensorFlow datasets catalog
dataset = dataset_factory.get_dataset(dataset_dir=dataset_dir,
dataset_name='tf_flowers',
use_case=UseCaseType.IMAGE_CLASSIFICATION,
framework=FrameworkType.TENSORFLOW,
dataset_catalog='tf_datasets')
dataset.preprocess(image_size=model.image_size, batch_size=32)
dataset.shuffle_split(train_pct=.75, val_pct=.25)
# Train the model using the dataset
model.train(dataset, output_dir=output_dir, epochs=1)
# Evaluate the trained model
metrics = model.evaluate(dataset)
for metric_name, metric_value in zip(model._model.metrics_names, metrics):
print("{}: {}".format(metric_name, metric_value))
# Export the model
saved_model_dir = model.export(output_dir=output_dir)
# Quantize the trained model
quantization_output = os.path.join(output_dir, "quantized_model")
model.quantize(quantization_output, dataset, overwrite_model=True)
# Benchmark the trained model using the Intel Neural Compressor config file
model.benchmark(dataset, saved_model_dir=quantization_output)
# Do graph optimization on the trained model
optimization_output = os.path.join(output_dir, "optimized_model")
model.optimize_graph(optimization_output, overwrite_model=True)
```
For more information on the API, see the [API Documentation](/api.md).
## Summary and Next Steps
The Intel Transfer Learning Tool can be used to develop an AI model and export
an Intel-optimized saved model for deployment. The sample CLI and API commands
we've presented show how to execute end-to-end transfer learning workflows.
For the no-code CLI, you can follow a
complete example that includes trainng, evaluation, benchmarking, and quantization
in the datasets, as well as some additional models in the [Beyond Get Started
CLI example](examples/cli/README.md) documentation. You can also read about all the
CLI commands in the [CLI reference](/cli.md).
For the low-code API, read about the API in the [API Documentation](/api.md).
Find more CLI and API examples in our list of [Examples](examples/README.md).
|