Spaces:
Configuration error
Configuration error
File size: 12,068 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"id": "ac1059eb",
"metadata": {},
"source": [
"# Document-Level Sentiment Analysis using<br>PyTorch and the Intel® Transfer Learning Tool API\n",
"\n",
"This notebook uses the Intel® Transfer Learning Tool to fine-tune a HuggingFace pretrained BERT model for text classification. While this notebook runs on a single node, this workload can also be run in a multinode setting using the TLT CLI. Consult the project documentation and examples to run it using PyTorch distributed training."
]
},
{
"cell_type": "markdown",
"id": "0bb70464",
"metadata": {},
"source": [
"## 1. Import dependencies and setup parameters\n",
"\n",
"This notebook assumes that you have already followed the instructions to setup a Pytorch environment with all the dependencies required to run the notebook."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "20ab9972",
"metadata": {},
"outputs": [],
"source": [
"import intel_extension_for_pytorch as ipex\n",
"import numpy as np\n",
"import os\n",
"import pandas as pd\n",
"\n",
"# tlt imports\n",
"from tlt.datasets import dataset_factory\n",
"from tlt.models import model_factory\n",
"from tlt.utils.file_utils import download_and_extract_zip_file\n",
"\n",
"# Specify a directory for the dataset to be downloaded\n",
"dataset_dir = os.environ[\"DATASET_DIR\"] if \"DATASET_DIR\" in os.environ else \\\n",
" os.path.join(os.environ[\"HOME\"], \"dataset\")\n",
" \n",
"# Specify a directory for output\n",
"output_dir = os.environ[\"OUTPUT_DIR\"] if \"OUTPUT_DIR\" in os.environ else \\\n",
" os.path.join(os.environ[\"HOME\"], \"output\")\n",
"\n",
"print(\"Dataset directory:\", dataset_dir)\n",
"print(\"Output directory:\", output_dir)"
]
},
{
"cell_type": "markdown",
"id": "47787deb",
"metadata": {},
"source": [
"## 2. Get the model\n",
"\n",
"In this step, we call the Intel Transfer Learning Tool model factory to list supported Huggingface text classification models. This is a list of pretrained models from Huggingface that we tested with our API. Optionally, the `verbose=True` argument can be added to the `print_supported_models()` function call to get more information about each model (such as the links to Huggingface, the original dataset, etc)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "52a4af60",
"metadata": {},
"outputs": [],
"source": [
"# See a list of available text classification models\n",
"model_factory.print_supported_models(use_case='text_classification', framework='pytorch')"
]
},
{
"cell_type": "markdown",
"id": "7293733f",
"metadata": {},
"source": [
"Use the TLT model factory to get one of the models listed in the previous cell. The `get_model` function returns a model object that will later be used for training. For this example, we will use bert-large-uncased."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "050d7b0a",
"metadata": {},
"outputs": [],
"source": [
"model_name = \"bert-large-uncased\"\n",
"framework = \"pytorch\"\n",
"\n",
"model = model_factory.get_model(model_name, framework, num_classes=2)\n",
"\n",
"print(\"Model name:\", model.model_name)\n",
"print(\"Framework:\", model.framework)\n",
"print(\"Use case:\", model.use_case)"
]
},
{
"cell_type": "markdown",
"id": "37bf5a93",
"metadata": {},
"source": [
"## 3. Get the dataset"
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "c833ce65",
"metadata": {},
"source": [
"### Option A: Use the Hugging Face catalog\n",
"\n",
"Here we are using the dataset in the [Hugging Face datasets catalog](https://huggingface.co/datasets)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf29cc7e",
"metadata": {},
"outputs": [],
"source": [
"dataset_name = \"sst2\"\n",
"dataset = dataset_factory.get_dataset(dataset_dir, model.use_case, model.framework, dataset_name,\n",
" dataset_catalog=\"huggingface\", shuffle_files=True, \n",
" split=['train', 'validation'])\n",
"\n",
"print(dataset.info)\n",
"print(\"\\nClass names:\", str(dataset.class_names))"
]
},
{
"cell_type": "markdown",
"id": "28504679",
"metadata": {},
"source": [
"Skip to the next step [4. Preprocess the dataset](#4.-Preprocess-the-dataset) to continue using your own dataset."
]
},
{
"cell_type": "markdown",
"id": "6867f79e",
"metadata": {},
"source": [
"### Option B: Download the SST2 dataset\n",
"Option B explicitly downloads the `SST-2.zip` file and extracts a `.tsv` file of training data that is tab separated. The dataset factory expects custom text classification input files to have at least two columns where one is the label and the second column is the text/sentence to classify.\n",
"\n",
"For example, the header and first three rows of the file should look similar to this:\n",
"```\n",
"sentence\tlabel\n",
"hide new secretions from the parental units \t0\n",
"contains no wit , only labored gags \t0\n",
"that loves its characters and communicates something rather beautiful about human nature \t1\n",
"```\n",
"\n",
"When using your own dataset, update the path to your dataset directory, as well the other variables with properties about the dataset like the .csv (or .tsv) file name, class names, delimiter, header, and the map function (if string labels need to be translated into numerical values)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "41edc8fc",
"metadata": {},
"outputs": [],
"source": [
"# Modify the variables below to use a different dataset or a csv file on your local system.\n",
"dataset_url = \"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip\"\n",
"csv_name = \"train.tsv\"\n",
"delimiter = \"\\t\"\n",
"dataset_subdir = os.path.join(dataset_dir, 'SST-2')\n",
"# If we don't already have the csv file, download and extract the zip file to get it.\n",
"if not os.path.exists(os.path.join(dataset_subdir, csv_name)):\n",
" download_and_extract_zip_file(dataset_url, dataset_dir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "94e348c2",
"metadata": {},
"outputs": [],
"source": [
"dataset = dataset_factory.load_dataset(dataset_dir=dataset_subdir, \n",
" use_case=\"text_classification\",\n",
" framework=\"pytorch\", csv_file_name=csv_name,\n",
" column_names=[\"sentence\", \"label\"], \n",
" delimiter=delimiter, header=True, label_col=1)\n",
"\n",
"print(dataset.info)\n",
"print(\"\\nClass names:\", str(dataset.class_names))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e0771e4",
"metadata": {},
"outputs": [],
"source": [
"# Create splits for training and validation\n",
"dataset.shuffle_split(train_pct=0.75, val_pct=0.25)"
]
},
{
"cell_type": "markdown",
"id": "539d53b7",
"metadata": {},
"source": [
"## 4. Preprocess the dataset\n",
"\n",
"Once you have your dataset from Option A or Option B above, use the following cell to preprocess the dataset. The dataset subsets are tokenized and then batched."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "587d1d9e",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"dataset.preprocess(model_name, batch_size=32, max_length=55)"
]
},
{
"cell_type": "markdown",
"id": "352eda54",
"metadata": {},
"source": [
"## 5. Fine tuning\n",
"\n",
"The TLT model's train function is called with the dataset that was just prepared, along with an output directory for checkpoints, and the number of training epochs.\n",
"\n",
"With the do_eval paramter set to True by default, this step will also show how the model can be evaluated. The model's evaluate function returns a list of metrics calculated from the dataset's validation subset."
]
},
{
"cell_type": "markdown",
"id": "492ee811",
"metadata": {},
"source": [
"### Arguments\n",
"\n",
"#### Required\n",
"- **dataset** (ImageClassificationDataset, required): Dataset to use when training the model\n",
"- **output_dir** (str): Path to a writeable directory for checkpoint files\n",
"- **epochs** (int): Number of epochs to train the model (default: 1)\n",
"\n",
"#### Optional\n",
"- **initial_checkpoints** (str): Path to checkpoint weights to load. If the path provided is a directory, the latest checkpoint will be used.\n",
"- **ipex_optimize** (bool): Optimize the model using Intel® Extension for PyTorch (default: True)\n",
"\n",
"Note: refer to release documentation for an up-to-date list of train arguments and their current descriptions"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "955a4a7e",
"metadata": {},
"outputs": [],
"source": [
"history = model.train(dataset, output_dir, epochs=1, ipex_optimize=True)"
]
},
{
"cell_type": "markdown",
"id": "7e08a1c9",
"metadata": {},
"source": [
"## 6. Predict\n",
"\n",
"The model's predict function can be called with a sentence."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6f3cbd35",
"metadata": {},
"outputs": [],
"source": [
"result = model.predict(\"Terrible movie\")\n",
"\n",
"print(\"Predicted score:\", float(result))\n",
"print(\"Predicted label:\", dataset.get_str_label(float(result)))"
]
},
{
"cell_type": "markdown",
"id": "64ada826",
"metadata": {},
"source": [
"## 7. Export the saved model\n",
"\n",
"Lastly, we can call the model export function to generate a saved_model.pb. Each time the model is exported, a new numbered directory is created, which allows serving to pick up the latest model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3981b2f5",
"metadata": {},
"outputs": [],
"source": [
"saved_model_dir = model.export(output_dir)"
]
},
{
"cell_type": "markdown",
"id": "3d0ed367",
"metadata": {},
"source": [
"## Citation\n",
"\n",
"```\n",
"@inproceedings{socher-etal-2013-recursive,\n",
" title = \"Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank\",\n",
" author = \"Socher, Richard and\n",
" Perelygin, Alex and\n",
" Wu, Jean and\n",
" Chuang, Jason and\n",
" Manning, Christopher D. and\n",
" Ng, Andrew and\n",
" Potts, Christopher\",\n",
" booktitle = \"Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing\",\n",
" month = oct,\n",
" year = \"2013\",\n",
" address = \"Seattle, Washington, USA\",\n",
" publisher = \"Association for Computational Linguistics\",\n",
" url = \"https://www.aclweb.org/anthology/D13-1170\",\n",
" pages = \"1631--1642\",\n",
"}\n",
"```"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|