Spaces:
Configuration error
Configuration error
File size: 15,476 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import os
import numpy as np
import pytest
import shutil
import tempfile
try:
import torch
import torch.nn as nn
import torch.nn.functional as functional
except ModuleNotFoundError:
print("WARNING: Unable to import torch. Torch may not be installed")
from tlt.datasets import dataset_factory
from tlt.models import model_factory
from tlt.utils.file_utils import download_and_extract_tar_file
@pytest.mark.skip(reason='TODO: Solve test fails with urllib.error.HTTPError: HTTP Error 403: rate limit exceeded')
@pytest.mark.pytorch
@pytest.mark.parametrize('model_name,dataset_name,extra_layers,correct_num_layers,test_inc',
[['efficientnet_b0', 'CIFAR10', None, 2, False],
['resnet18_ssl', 'CIFAR10', None, 1, False],
['efficientnet_b0', 'CIFAR10', [1024, 512], 6, False],
['resnet18', 'CIFAR10', [1024, 512], 5, True]])
def test_pyt_image_classification(model_name, dataset_name, extra_layers, correct_num_layers, test_inc):
"""
Tests basic transfer learning functionality for PyTorch image classification models using a torchvision dataset
"""
framework = 'pytorch'
output_dir = tempfile.mkdtemp()
os.environ["TORCH_HOME"] = output_dir
# Get the dataset
dataset = dataset_factory.get_dataset('/tmp/data', 'image_classification', framework, dataset_name,
'torchvision', split=["train"], shuffle_files=False)
# Get the model
model = model_factory.get_model(model_name, framework)
# Preprocess the dataset
dataset.preprocess(image_size='variable', batch_size=32)
dataset.shuffle_split(train_pct=0.05, val_pct=0.05, seed=10)
assert dataset._validation_type == 'shuffle_split'
# Evaluate before training
pretrained_metrics = model.evaluate(dataset)
assert len(pretrained_metrics) > 0
# Train
model.train(dataset, output_dir=output_dir, epochs=1, do_eval=False, extra_layers=extra_layers, seed=10)
assert len(list(model._model.children())[-1]) == correct_num_layers
# Evaluate
trained_metrics = model.evaluate(dataset)
assert trained_metrics[0] <= pretrained_metrics[0] # loss
assert trained_metrics[1] >= pretrained_metrics[1] # accuracy
# Predict with a batch
images, labels = dataset.get_batch()
predictions = model.predict(images)
assert len(predictions) == 32
probabilities = model.predict(images, return_type='probabilities')
assert probabilities.shape == torch.Size([32, 10]) # CIFAR has 10 classes
np.testing.assert_almost_equal(torch.sum(probabilities), np.float32(32), decimal=4)
# Export the saved model
saved_model_dir = model.export(output_dir)
assert os.path.isdir(saved_model_dir)
assert os.path.isfile(os.path.join(saved_model_dir, "model.pt"))
# Reload the saved model
reload_model = model_factory.get_model(model_name, framework)
reload_model.load_from_directory(saved_model_dir)
# Evaluate
reload_metrics = reload_model.evaluate(dataset)
assert reload_metrics == trained_metrics
# Ensure we get not implemented errors for graph_optimization
with pytest.raises(NotImplementedError):
model.optimize_graph(os.path.join(saved_model_dir, 'optimized'))
# Test quantization and benchmarking
if test_inc:
inc_output_dir = os.path.join(output_dir, "quantized", 'resnet18')
os.makedirs(inc_output_dir, exist_ok=True)
model.quantize(inc_output_dir, dataset)
assert os.path.exists(os.path.join(inc_output_dir, "model.pt"))
model.benchmark(dataset=dataset, saved_model_dir=inc_output_dir)
# Delete the temp output directory
if os.path.exists(output_dir) and os.path.isdir(output_dir):
shutil.rmtree(output_dir)
@pytest.mark.integration
@pytest.mark.pytorch
def test_pyt_image_classification_custom_model():
"""
Tests basic transfer learning functionality for custom PyTorch image classification models using a Torchvision
dataset
"""
framework = 'pytorch'
use_case = 'image_classification'
output_dir = tempfile.mkdtemp()
os.environ["TORCH_HOME"] = output_dir
# Get the dataset
dataset = dataset_factory.get_dataset('/tmp/data', 'image_classification', framework, 'CIFAR10',
'torchvision', split=["train"], shuffle_files=False)
# Define a model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(functional.relu(self.conv1(x)))
x = self.pool(functional.relu(self.conv2(x)))
x = torch.flatten(x, 1)
x = functional.relu(self.fc1(x))
x = functional.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# Get the model
model = model_factory.load_model('custom_model', net, framework, use_case)
assert model.num_classes == 10
# Preprocess the dataset
dataset.preprocess(image_size='variable', batch_size=32)
dataset.shuffle_split(train_pct=0.05, val_pct=0.05, seed=10)
assert dataset._validation_type == 'shuffle_split'
# Train
model.train(dataset, output_dir=output_dir, epochs=1, do_eval=False, seed=10)
# Evaluate
trained_metrics = model.evaluate(dataset)
assert trained_metrics[0] > 0.0 # loss
assert trained_metrics[1] > 0.0 # accuracy
# Predict with a batch
images, labels = dataset.get_batch()
predictions = model.predict(images)
assert len(predictions) == 32
probabilities = model.predict(images, return_type='probabilities')
assert probabilities.shape == torch.Size([32, 10]) # CIFAR has 10 classes
np.testing.assert_almost_equal(torch.sum(probabilities), np.float32(32), decimal=4)
# Export the saved model
saved_model_dir = model.export(output_dir)
assert os.path.isdir(saved_model_dir)
assert os.path.isfile(os.path.join(saved_model_dir, "model.pt"))
# Reload the saved model
reload_model = model_factory.load_model('custom_model', saved_model_dir, framework, use_case)
# Evaluate
reload_metrics = reload_model.evaluate(dataset)
assert reload_metrics == trained_metrics
# Ensure we get not implemented errors for graph_optimization
with pytest.raises(NotImplementedError):
model.optimize_graph(os.path.join(saved_model_dir, 'optimized'))
# Test quantization and benchmarking
inc_output_dir = os.path.join(output_dir, "quantized", 'Net')
os.makedirs(inc_output_dir, exist_ok=True)
model.quantize(inc_output_dir, dataset)
assert os.path.exists(os.path.join(inc_output_dir, "model.pt"))
model.benchmark(dataset=dataset, saved_model_dir=inc_output_dir)
# Delete the temp output directory
if os.path.exists(output_dir) and os.path.isdir(output_dir):
shutil.rmtree(output_dir)
@pytest.mark.pytorch
class TestImageClassificationCustomDataset:
"""
Tests for PyTorch image classification using a custom dataset using the flowers dataset
"""
@classmethod
def setup_class(cls):
temp_dir = tempfile.mkdtemp(dir='/tmp/data')
custom_dataset_path = os.path.join(temp_dir, "flower_photos")
if not os.path.exists(custom_dataset_path):
download_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
download_and_extract_tar_file(download_url, temp_dir)
os.makedirs('/tmp/output', exist_ok=True)
cls._output_dir = tempfile.mkdtemp(dir='/tmp/output')
os.environ["TORCH_HOME"] = cls._output_dir
cls._temp_dir = temp_dir
cls._dataset_dir = custom_dataset_path
@classmethod
def teardown_class(cls):
# remove directories
for dir in [cls._output_dir, cls._temp_dir]:
if os.path.exists(dir):
print("Deleting test directory:", dir)
shutil.rmtree(dir)
@pytest.mark.skip(reason='TODO: Solve test fails with urllib.error.HTTPError: HTTP Error 403: rate limit exceeded')
@pytest.mark.parametrize('model_name,add_aug,ipex_optimize,test_inc',
[['efficientnet_b0', ['hflip'], True, False],
['resnet18', ['rotate'], False, True],
['resnet18', None, True, True],
['resnet18_ssl', ['rotate'], True, False],
['vit_b_16', None, False, False]])
def test_custom_dataset_workflow(self, model_name, add_aug, ipex_optimize, test_inc):
"""
Tests the full workflow for PYT image classification using a custom dataset
"""
framework = 'pytorch'
use_case = 'image_classification'
# Get the dataset
dataset = dataset_factory.load_dataset(self._dataset_dir, use_case=use_case, framework=framework,
shuffle_files=False)
assert ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] == dataset.class_names
# Get the model
model = model_factory.get_model(model_name, framework)
# Preprocess the dataset and split to get small subsets for training and validation
dataset.preprocess(model.image_size, 32, add_aug=add_aug)
dataset.shuffle_split(train_pct=0.1, val_pct=0.1, seed=10)
# Train for 1 epoch
model.train(dataset, output_dir=self._output_dir, epochs=1, do_eval=False, seed=10, ipex_optimize=ipex_optimize)
# Evaluate
model.evaluate(dataset)
# Predict with a batch
images, labels = dataset.get_batch()
predictions = model.predict(images)
assert len(predictions) == 32
# export the saved model
saved_model_dir = model.export(self._output_dir)
assert os.path.isdir(saved_model_dir)
assert os.path.isfile(os.path.join(saved_model_dir, "model.pt"))
# Reload the saved model
reload_model = model_factory.get_model(model_name, framework)
reload_model.load_from_directory(saved_model_dir)
# Evaluate
metrics = reload_model.evaluate(dataset)
assert len(metrics) > 0
# Test benchmarking and quantization
if test_inc:
inc_output_dir = os.path.join(self._output_dir, "quantized", model_name)
os.makedirs(inc_output_dir, exist_ok=True)
model.quantize(inc_output_dir, dataset)
assert os.path.exists(os.path.join(inc_output_dir, "model.pt"))
model.benchmark(saved_model_dir=inc_output_dir, dataset=dataset)
@pytest.mark.integration
@pytest.mark.pytorch
@pytest.mark.parametrize('model_name,dataset_name,epochs,lr,do_eval,early_stopping,lr_decay,final_lr,final_acc',
[['efficientnet_b0', 'CIFAR10', 10, 0.005, True, False, True, 0.001, 0.9888],
['resnet18', 'CIFAR10', 1, 0.005, True, False, False, None, 0.2688],
['efficientnet_b0', 'CIFAR10', 1, 0.001, False, False, False, None, 0.1976],
['efficientnet_b0', 'CIFAR10', 10, 0.001, True, True, True, 0.0002, 0.8768]])
def test_pyt_image_classification_with_lr_options(model_name, dataset_name, epochs, lr, do_eval, early_stopping,
lr_decay, final_lr, final_acc):
"""
Tests transfer learning for PyTorch image classification models using learning rate options
"""
framework = 'pytorch'
output_dir = tempfile.mkdtemp()
os.environ["TORCH_HOME"] = output_dir
# Get the dataset
dataset = dataset_factory.get_dataset('/tmp/data', 'image_classification', framework, dataset_name,
'torchvision', split=["train"], shuffle_files=False)
# Get the model
model = model_factory.get_model(model_name, framework)
model.learning_rate = lr
# Preprocess the dataset
dataset.shuffle_split(train_pct=0.05, val_pct=0.05, shuffle_files=False)
dataset.preprocess(image_size='variable', batch_size=32)
assert dataset._validation_type == 'shuffle_split'
# Train
history = model.train(dataset, output_dir=output_dir, epochs=epochs, do_eval=do_eval, early_stopping=early_stopping,
lr_decay=lr_decay, seed=10)
if final_lr:
assert model._lr_scheduler.optimizer.param_groups[0]['lr'] == final_lr
else:
assert model._lr_scheduler is None
assert history['Acc'][-1] == final_acc
@pytest.mark.integration
@pytest.mark.pytorch
def test_pyt_freeze():
"""
Tests layer freezing functionality for PyTorch image classification models using a torchvision dataset
"""
dataset_name = 'CIFAR10'
framework = 'pytorch'
layer_name = 'features'
model_name = 'efficientnet_b0'
output_dir = tempfile.mkdtemp()
os.environ["TORCH_HOME"] = output_dir
# Get the dataset
dataset = dataset_factory.get_dataset('/tmp/data', 'image_classification', framework, dataset_name,
'torchvision', split=["train"], shuffle_files=False)
# Get the model
model = model_factory.get_model(model_name, framework)
# Preprocess the dataset
dataset.preprocess(image_size='variable', batch_size=32)
dataset.shuffle_split(train_pct=0.05, val_pct=0.05, seed=10)
# Train
model.train(dataset, output_dir=output_dir, epochs=1, do_eval=False)
# Check that everything in the layer is unfrozen
model.unfreeze_layer("features")
# Unfreeze everything in the layer
for (name, module) in model._model.named_children():
if name == layer_name:
for layer in module.children():
for param in layer.parameters():
assert param.requires_grad is True
# Check that everything in the layer is frozen
model.freeze_layer("features")
# Freeze everything in the layer
for (name, module) in model._model.named_children():
if name == layer_name:
for layer in module.children():
for param in layer.parameters():
assert param.requires_grad is False
# Test functionality of list_layers()
trainable_params = model.list_layers()
assert trainable_params == 12810 # Number of trainable params in efficientnet_b0
if os.path.exists(output_dir) and os.path.isdir(output_dir):
shutil.rmtree(output_dir)
|