File size: 14,420 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import os

import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.transforms as T

from tqdm import tqdm
from random import Random
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP

import oneccl_bindings_for_pytorch  # noqa # pylint: disable=unused-import
import intel_extension_for_pytorch as ipex

import horovod.torch as hvd


class HorovodTrainer:
    def __init__(self, cuda=False) -> None:
        # Horovod: limit # of CPU threads to be used per worker.
        torch.set_num_threads(1)

        dataloader_kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {}
        # When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
        # issues with Infiniband implementations that are not fork-safe
        if (dataloader_kwargs.get('num_workers', 0) > 0 and hasattr(mp, '_supports_context') and
                mp._supports_context and 'forkserver' in mp.get_all_start_methods()):
            dataloader_kwargs['multi_processing_context'] = 'forkserver'

        self.dataloader_kwargs = dataloader_kwargs

        # Init horovod
        hvd.init()

    def prepare_data(self, dataset, use_case, batch_size=128, **kwargs):
        if not kwargs.get('is_preprocessed'):
            if use_case == 'image_classification':
                dataset.transform = T.Compose([
                    T.ToTensor(),
                    T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                ])
                pass
            elif use_case == 'text_classification':
                hf_tokenizer = kwargs.get('hf_tokenizer')
                max_seq_length = kwargs.get('max_seq_length')
                text_column_names = kwargs.get('text_column_names')

                def tokenize_func(sample):
                    args = (sample[c] for c in text_column_names)
                    result = hf_tokenizer(*args, padding='max_length', max_length=max_seq_length,
                                          truncation=True)
                    return result
                dataset = dataset.map(tokenize_func)
                dataset.set_format('torch')
        data_sampler = DistributedSampler(dataset, num_replicas=hvd.size(), rank=hvd.rank())
        dataloader = DataLoader(dataset, batch_size=batch_size, sampler=data_sampler,
                                **self.dataloader_kwargs)
        return dataloader, data_sampler

    def prepare_model(self, model, use_case, optimizer=None, loss=None, scale_lr=True):
        if optimizer is None:
            if use_case == 'image_classification':
                optimizer = torch.optim.Adam(model.parameters())
            elif use_case == 'text_classification':
                optimizer = torch.optim.AdamW(model.parameters())

        if loss is None:
            loss = torch.nn.CrossEntropyLoss()
        # Horovod: scale learning rate by lr_scaler.
        if scale_lr:
            scaled_lr = optimizer.param_groups[0]['lr'] * hvd.size()
            optimizer.param_groups[0]['lr'] = scaled_lr

        # Horovod: broadcast parameters & optimizer state.
        hvd.broadcast_parameters(model.state_dict(), root_rank=0)
        hvd.broadcast_optimizer_state(optimizer, root_rank=0)

        # Horovod: wrap optimizer with DistributedOptimizer.
        optimizer = hvd.DistributedOptimizer(
            optimizer,
            named_parameters=model.named_parameters(),
            compression=hvd.Compression.none,
            op=hvd.Average
        )

        self.model = model
        self.optimizer = optimizer
        self.criterion = loss

    def fit(self, dataloader, data_sampler, use_case, epochs=1, log_interval=10):
        if use_case == 'image_classification':
            for epoch in range(1, epochs + 1):
                self.model.train()

                # Horovod: set epoch to sampler for shuffling
                data_sampler.set_epoch(epoch)
                for batch_idx, (data, target) in enumerate(dataloader):
                    self.optimizer.zero_grad()
                    output = self.model(data)
                    loss = self.criterion(output, target)
                    loss.backward()
                    self.optimizer.step()
                    if batch_idx % log_interval == 0:
                        # Horovod: use train_sampler to determine the number of examples in
                        # this worker's partition.
                        print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                            epoch, batch_idx * len(data), len(data_sampler),
                            100. * batch_idx / len(dataloader), loss.item()))
        elif use_case == 'text_classification':
            for epoch in range(1, epochs + 1):
                self.model.train()

                data_sampler.set_epoch(epoch)
                for batch_idx, data in enumerate(dataloader):
                    inputs = {k: v for k, v in data.items() if k in ['input_ids', 'token_type_ids', 'attention_mask']}
                    labels = data['label']
                    outputs = self.model(**inputs)
                    loss = self.criterion(outputs.logits, labels)

                    loss.backward()
                    self.optimizer.step()

                    if batch_idx % log_interval == 0:
                        # Horovod: use train_sampler to determine the number of examples in
                        # this worker's partition.
                        print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                            epoch, batch_idx * len(data), len(data_sampler),
                            100. * batch_idx / len(dataloader), loss.item()))


""" Dataset partitioning helper classes and methods """


class Partition(object):

    def __init__(self, data, index):
        self.data = data
        self.index = index

    def __len__(self):
        return len(self.index)

    def __getitem__(self, index):
        data_idx = self.index[index]
        return self.data[data_idx]


class DataPartitioner(object):

    def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):
        self.data = data
        self.partitions = []

        rng = Random()
        rng.seed(seed)
        data_len = len(data)
        indexes = [x for x in range(0, data_len)]
        rng.shuffle(indexes)

        for frac in sizes:
            part_len = int(frac * data_len)
            self.partitions.append(indexes[0:part_len])
            indexes = indexes[part_len:]

    def use(self, partition):
        return Partition(self.data, self.partitions[partition])


def partition_dataset(dataset, batch_size):
    world_size = dist.get_world_size()
    bsz = int(batch_size / world_size)
    partition_sizes = [1.0 / world_size for _ in range(world_size)]
    partition = DataPartitioner(dataset, partition_sizes)
    partition = partition.use(dist.get_rank())
    train_loader = DataLoader(partition, batch_size=bsz, shuffle=True)

    return train_loader, bsz


""" Distributed Torch helper classes """


class DistributedTrainingArguments:
    def __init__(self, **kwargs) -> None:
        self.__dict__ = dict(kwargs)


class DistributedTorch:

    def __init__(self, use_case: str) -> None:
        self.use_case = use_case

    def launch_distributed_job(
            self,
            training_args: DistributedTrainingArguments,
            master_addr: str,
            master_port: str,
            backend: str = 'ccl'
    ):
        DistributedTorch.setup_ddp(master_addr, master_port, backend)

        self._fit(training_args)

        DistributedTorch.cleanup_ddp()

    def _fit(self, training_args: DistributedTrainingArguments):
        self._model = training_args.model
        self._optimizer = training_args.optimizer
        self._criterion = training_args.criterion

        if not training_args.disable_ipex:
            self._model, self._optimizer = ipex.optimize(self._model, optimizer=self._optimizer)

        self._ddp_model = DDP(self._model)

        dataset = training_args.dataset
        batch_size = training_args.batch_size
        epochs = training_args.epochs

        dataloader, bsz = partition_dataset(dataset, batch_size)
        epoch_accuracies, epoch_losses = [], []

        # Since we are loading the model from disk, we have to set 'requires_grad'
        # to True for the optimizer to update the model parameters.
        for param in self._ddp_model.parameters():
            param.requires_grad = True

        if self.use_case == 'text_classification':
            for epoch in range(epochs):
                print(f'Epoch {epoch+1}/{epochs}')
                print('-' * 10)

                # Training phase
                running_loss = 0.0
                running_corrects = 0

                # Iterate over data.
                for data_batch in tqdm(dataloader):
                    inputs = {k: v for k, v in data_batch.items()
                              if k in ['input_ids', 'token_type_ids', 'attention_mask']}
                    labels = data_batch['label']

                    # zero the parameter gradients
                    self._optimizer.zero_grad()

                    # Forward pass
                    outputs = self._ddp_model(**inputs)
                    loss = self._criterion(outputs.logits, labels)

                    # Backward pass
                    loss.backward()
                    self.average_gradients()
                    self._optimizer.step()

                    # Statistics
                    predictions = torch.argmax(outputs.logits, dim=-1)
                    running_loss += torch.as_tensor(loss.item() * data_batch['input_ids'].size(0))
                    running_corrects += torch.sum(predictions == labels)

                dist.all_reduce(running_loss, op=dist.ReduceOp.SUM)
                dist.all_reduce(running_corrects, op=dist.ReduceOp.SUM)
                epoch_loss = running_loss / len(dataset)
                epoch_acc = running_corrects / len(dataset)
                epoch_accuracies.append(epoch_acc)
                epoch_losses.append(epoch_loss)

                print("Loss: {}".format(epoch_loss))
                print("Acc: {}".format(epoch_acc))

            training_loss = epoch_losses[-1]
            training_acc = epoch_accuracies[-1]

            if dist.get_rank() == 0:
                print("Training loss:", training_loss)
                print("Training accuracy:", training_acc)
        elif self.use_case == 'image_classification':
            for epoch in range(epochs):
                print('Epoch {}/{}'.format(epoch + 1, epochs))

                running_loss = 0
                running_corrects = 0
                for data, target in tqdm(dataloader):
                    self._optimizer.zero_grad()
                    out = self._ddp_model(data)
                    loss = self._criterion(out, target)
                    loss.backward()
                    self.average_gradients()
                    self._optimizer.step()

                    # Statistics
                    preds = torch.argmax(out, dim=1)
                    running_loss += torch.as_tensor(loss.item() * data.size(0))
                    running_corrects += torch.sum(preds == target)

                # Collect all the running_loss and running_corrects tensors
                dist.all_reduce(running_loss, op=dist.ReduceOp.SUM)
                dist.all_reduce(running_corrects, op=dist.ReduceOp.SUM)
                epoch_loss = running_loss / len(dataset)
                epoch_acc = running_corrects / len(dataset)
                epoch_accuracies.append(epoch_acc)
                epoch_losses.append(epoch_loss)

                print("Loss: {}".format(epoch_loss))
                print("Acc: {}".format(epoch_acc))

            training_loss = epoch_losses[-1]
            training_acc = epoch_accuracies[-1]

            if dist.get_rank() == 0:
                print("Training loss:", training_loss)
                print("Training accuracy:", training_acc)
        else:
            raise ValueError("PyTorch Distributed Training for {} is not implemeted yet"
                             .format(self.use_case))

    def average_gradients(self):
        size = float(dist.get_world_size())
        for param in self._ddp_model.parameters():
            dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
            param.grad.data /= size

    @classmethod
    def setup_ddp(cls, master_addr: str, master_port: str, backend: str = 'ccl'):
        if dist.is_initialized():
            print("Process Group already initialized")
        else:
            os.environ['MASTER_ADDR'] = master_addr
            os.environ['MASTER_PORT'] = master_port
            os.environ['RANK'] = os.environ.get('PMI_RANK', '0')
            os.environ['WORLD_SIZE'] = os.environ.get('PMI_SIZE', '1')

            if backend == 'ccl':
                dist.init_process_group(
                    backend=backend,
                    init_method='env://'
                )

    @classmethod
    def cleanup_ddp(cls):
        if dist.is_initialized():
            dist.destroy_process_group()

    @classmethod
    def load_saved_objects(cls, saved_objects_dir):
        """
        Helper function to load saved dataset and model objects

        Args:
            use_case (str): Use case of the saved datasets and models.

        Returns:
            dict with loaded dataset and model objects
        """
        saved_objects_file = 'torch_saved_objects.obj'

        return torch.load(os.path.join(saved_objects_dir, saved_objects_file))