Spaces:
Configuration error
Configuration error
File size: 14,420 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import os
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torchvision.transforms as T
from tqdm import tqdm
from random import Random
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import oneccl_bindings_for_pytorch # noqa # pylint: disable=unused-import
import intel_extension_for_pytorch as ipex
import horovod.torch as hvd
class HorovodTrainer:
def __init__(self, cuda=False) -> None:
# Horovod: limit # of CPU threads to be used per worker.
torch.set_num_threads(1)
dataloader_kwargs = {'num_workers': 1, 'pin_memory': True} if cuda else {}
# When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
# issues with Infiniband implementations that are not fork-safe
if (dataloader_kwargs.get('num_workers', 0) > 0 and hasattr(mp, '_supports_context') and
mp._supports_context and 'forkserver' in mp.get_all_start_methods()):
dataloader_kwargs['multi_processing_context'] = 'forkserver'
self.dataloader_kwargs = dataloader_kwargs
# Init horovod
hvd.init()
def prepare_data(self, dataset, use_case, batch_size=128, **kwargs):
if not kwargs.get('is_preprocessed'):
if use_case == 'image_classification':
dataset.transform = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
pass
elif use_case == 'text_classification':
hf_tokenizer = kwargs.get('hf_tokenizer')
max_seq_length = kwargs.get('max_seq_length')
text_column_names = kwargs.get('text_column_names')
def tokenize_func(sample):
args = (sample[c] for c in text_column_names)
result = hf_tokenizer(*args, padding='max_length', max_length=max_seq_length,
truncation=True)
return result
dataset = dataset.map(tokenize_func)
dataset.set_format('torch')
data_sampler = DistributedSampler(dataset, num_replicas=hvd.size(), rank=hvd.rank())
dataloader = DataLoader(dataset, batch_size=batch_size, sampler=data_sampler,
**self.dataloader_kwargs)
return dataloader, data_sampler
def prepare_model(self, model, use_case, optimizer=None, loss=None, scale_lr=True):
if optimizer is None:
if use_case == 'image_classification':
optimizer = torch.optim.Adam(model.parameters())
elif use_case == 'text_classification':
optimizer = torch.optim.AdamW(model.parameters())
if loss is None:
loss = torch.nn.CrossEntropyLoss()
# Horovod: scale learning rate by lr_scaler.
if scale_lr:
scaled_lr = optimizer.param_groups[0]['lr'] * hvd.size()
optimizer.param_groups[0]['lr'] = scaled_lr
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
optimizer,
named_parameters=model.named_parameters(),
compression=hvd.Compression.none,
op=hvd.Average
)
self.model = model
self.optimizer = optimizer
self.criterion = loss
def fit(self, dataloader, data_sampler, use_case, epochs=1, log_interval=10):
if use_case == 'image_classification':
for epoch in range(1, epochs + 1):
self.model.train()
# Horovod: set epoch to sampler for shuffling
data_sampler.set_epoch(epoch)
for batch_idx, (data, target) in enumerate(dataloader):
self.optimizer.zero_grad()
output = self.model(data)
loss = self.criterion(output, target)
loss.backward()
self.optimizer.step()
if batch_idx % log_interval == 0:
# Horovod: use train_sampler to determine the number of examples in
# this worker's partition.
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(data_sampler),
100. * batch_idx / len(dataloader), loss.item()))
elif use_case == 'text_classification':
for epoch in range(1, epochs + 1):
self.model.train()
data_sampler.set_epoch(epoch)
for batch_idx, data in enumerate(dataloader):
inputs = {k: v for k, v in data.items() if k in ['input_ids', 'token_type_ids', 'attention_mask']}
labels = data['label']
outputs = self.model(**inputs)
loss = self.criterion(outputs.logits, labels)
loss.backward()
self.optimizer.step()
if batch_idx % log_interval == 0:
# Horovod: use train_sampler to determine the number of examples in
# this worker's partition.
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(data_sampler),
100. * batch_idx / len(dataloader), loss.item()))
""" Dataset partitioning helper classes and methods """
class Partition(object):
def __init__(self, data, index):
self.data = data
self.index = index
def __len__(self):
return len(self.index)
def __getitem__(self, index):
data_idx = self.index[index]
return self.data[data_idx]
class DataPartitioner(object):
def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):
self.data = data
self.partitions = []
rng = Random()
rng.seed(seed)
data_len = len(data)
indexes = [x for x in range(0, data_len)]
rng.shuffle(indexes)
for frac in sizes:
part_len = int(frac * data_len)
self.partitions.append(indexes[0:part_len])
indexes = indexes[part_len:]
def use(self, partition):
return Partition(self.data, self.partitions[partition])
def partition_dataset(dataset, batch_size):
world_size = dist.get_world_size()
bsz = int(batch_size / world_size)
partition_sizes = [1.0 / world_size for _ in range(world_size)]
partition = DataPartitioner(dataset, partition_sizes)
partition = partition.use(dist.get_rank())
train_loader = DataLoader(partition, batch_size=bsz, shuffle=True)
return train_loader, bsz
""" Distributed Torch helper classes """
class DistributedTrainingArguments:
def __init__(self, **kwargs) -> None:
self.__dict__ = dict(kwargs)
class DistributedTorch:
def __init__(self, use_case: str) -> None:
self.use_case = use_case
def launch_distributed_job(
self,
training_args: DistributedTrainingArguments,
master_addr: str,
master_port: str,
backend: str = 'ccl'
):
DistributedTorch.setup_ddp(master_addr, master_port, backend)
self._fit(training_args)
DistributedTorch.cleanup_ddp()
def _fit(self, training_args: DistributedTrainingArguments):
self._model = training_args.model
self._optimizer = training_args.optimizer
self._criterion = training_args.criterion
if not training_args.disable_ipex:
self._model, self._optimizer = ipex.optimize(self._model, optimizer=self._optimizer)
self._ddp_model = DDP(self._model)
dataset = training_args.dataset
batch_size = training_args.batch_size
epochs = training_args.epochs
dataloader, bsz = partition_dataset(dataset, batch_size)
epoch_accuracies, epoch_losses = [], []
# Since we are loading the model from disk, we have to set 'requires_grad'
# to True for the optimizer to update the model parameters.
for param in self._ddp_model.parameters():
param.requires_grad = True
if self.use_case == 'text_classification':
for epoch in range(epochs):
print(f'Epoch {epoch+1}/{epochs}')
print('-' * 10)
# Training phase
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data_batch in tqdm(dataloader):
inputs = {k: v for k, v in data_batch.items()
if k in ['input_ids', 'token_type_ids', 'attention_mask']}
labels = data_batch['label']
# zero the parameter gradients
self._optimizer.zero_grad()
# Forward pass
outputs = self._ddp_model(**inputs)
loss = self._criterion(outputs.logits, labels)
# Backward pass
loss.backward()
self.average_gradients()
self._optimizer.step()
# Statistics
predictions = torch.argmax(outputs.logits, dim=-1)
running_loss += torch.as_tensor(loss.item() * data_batch['input_ids'].size(0))
running_corrects += torch.sum(predictions == labels)
dist.all_reduce(running_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(running_corrects, op=dist.ReduceOp.SUM)
epoch_loss = running_loss / len(dataset)
epoch_acc = running_corrects / len(dataset)
epoch_accuracies.append(epoch_acc)
epoch_losses.append(epoch_loss)
print("Loss: {}".format(epoch_loss))
print("Acc: {}".format(epoch_acc))
training_loss = epoch_losses[-1]
training_acc = epoch_accuracies[-1]
if dist.get_rank() == 0:
print("Training loss:", training_loss)
print("Training accuracy:", training_acc)
elif self.use_case == 'image_classification':
for epoch in range(epochs):
print('Epoch {}/{}'.format(epoch + 1, epochs))
running_loss = 0
running_corrects = 0
for data, target in tqdm(dataloader):
self._optimizer.zero_grad()
out = self._ddp_model(data)
loss = self._criterion(out, target)
loss.backward()
self.average_gradients()
self._optimizer.step()
# Statistics
preds = torch.argmax(out, dim=1)
running_loss += torch.as_tensor(loss.item() * data.size(0))
running_corrects += torch.sum(preds == target)
# Collect all the running_loss and running_corrects tensors
dist.all_reduce(running_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(running_corrects, op=dist.ReduceOp.SUM)
epoch_loss = running_loss / len(dataset)
epoch_acc = running_corrects / len(dataset)
epoch_accuracies.append(epoch_acc)
epoch_losses.append(epoch_loss)
print("Loss: {}".format(epoch_loss))
print("Acc: {}".format(epoch_acc))
training_loss = epoch_losses[-1]
training_acc = epoch_accuracies[-1]
if dist.get_rank() == 0:
print("Training loss:", training_loss)
print("Training accuracy:", training_acc)
else:
raise ValueError("PyTorch Distributed Training for {} is not implemeted yet"
.format(self.use_case))
def average_gradients(self):
size = float(dist.get_world_size())
for param in self._ddp_model.parameters():
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= size
@classmethod
def setup_ddp(cls, master_addr: str, master_port: str, backend: str = 'ccl'):
if dist.is_initialized():
print("Process Group already initialized")
else:
os.environ['MASTER_ADDR'] = master_addr
os.environ['MASTER_PORT'] = master_port
os.environ['RANK'] = os.environ.get('PMI_RANK', '0')
os.environ['WORLD_SIZE'] = os.environ.get('PMI_SIZE', '1')
if backend == 'ccl':
dist.init_process_group(
backend=backend,
init_method='env://'
)
@classmethod
def cleanup_ddp(cls):
if dist.is_initialized():
dist.destroy_process_group()
@classmethod
def load_saved_objects(cls, saved_objects_dir):
"""
Helper function to load saved dataset and model objects
Args:
use_case (str): Use case of the saved datasets and models.
Returns:
dict with loaded dataset and model objects
"""
saved_objects_file = 'torch_saved_objects.obj'
return torch.load(os.path.join(saved_objects_dir, saved_objects_file))
|