File size: 13,588 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2023 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import os
import dill  # nosec: B403
import time

import tensorflow as tf
import tensorflow_hub as hub

import numpy as np

from transformers import TFBertModel, BertConfig

from pydoc import locate
from tlt.utils.dataset_utils import prepare_huggingface_input_data
from tlt.models.model_factory import get_model_info


# This needs to be imported last to avoid "free(): invalid pointer" error
import horovod.tensorflow.keras as hvd


class DistributedTrainingArguments:

    def __init__(self, use_case, train_data, model, optimizer, loss, test_data=None, val_data=None,
                 epochs=1, global_batch_size=128, shuffle=True, scaling='weak', **kwargs) -> None:

        self.use_case = use_case

        # Model related arguments
        self.model = model
        self.optimizer = optimizer
        self.loss = loss

        # Data related arguments
        self.train_data = train_data
        self.test_data = test_data
        self.val_data = val_data
        self.num_classes = kwargs.get('num_classes', None)

        # Training related arguments
        self.epochs = epochs
        self.scaling = scaling
        self.global_batch_size = global_batch_size
        self.batch_denom = kwargs.get('batch_denom', 1)
        self.shuffle = shuffle

        # Use case related arguments
        # For image classification
        self.image_size = kwargs.get('image_size', None)
        self.image_shape = kwargs.get('image_shape', None)
        # For text classification
        self.max_seq_length = kwargs.get('max_seq_length', None)
        self.padding = kwargs.get('padding', None)
        self.truncation = kwargs.get('truncation', None)
        self.hf_bert_tokenizer = kwargs.get('hf_bert_tokenizer', None)


class DistributedTF:

    def __init__(self) -> None:
        hvd.init()

    def prepare_dataset(self, dataset, use_case, global_batch_size, scaling, **kwargs):
        if scaling.lower() == 'weak':
            batch_size = global_batch_size
        elif scaling.lower() == 'strong':
            batch_size = global_batch_size // hvd.size()

        if use_case == 'image_classification':
            dataset = dataset.shard(num_shards=hvd.size(), index=hvd.rank())
            dataset = dataset.cache()
            if 'map_func' in kwargs:
                dataset = dataset.map(map_func=kwargs.get('map_func'), num_parallel_calls=tf.data.AUTOTUNE)
            dataset = dataset.batch(batch_size)
            dataset = dataset.prefetch(tf.data.AUTOTUNE)
        elif use_case == 'text_classification':
            max_seq_length = kwargs.get('max_seq_length')
            bert_tokenizer = kwargs.get('hf_bert_tokenizer')

            input_ids_shape = (len(dataset), max_seq_length)
            attention_mask_shape = (len(dataset), max_seq_length)

            input_ids = tf.zeros(input_ids_shape, dtype=tf.int32)
            attention_mask = tf.zeros(attention_mask_shape, dtype=tf.int32)
            labels = tf.ones(len(dataset), dtype=tf.int32)

            # Preprocessing text could be done only on one worker and the tensors are synced later among workers
            if hvd.rank() == 0:
                dataset = [(sentence.numpy().decode(), label.numpy()) for sentence, label in dataset]

                sentences = [x[0] for x in dataset]
                labels = [x[1] for x in dataset]

                print('Tokenizing the dataset...')
                tokenized_dataset = bert_tokenizer(sentences, padding='max_length', max_length=max_seq_length,
                                                   truncation=True, return_tensors='tf')

                input_ids = tokenized_dataset['input_ids']
                attention_mask = tokenized_dataset['attention_mask']
                labels = tf.convert_to_tensor(labels, dtype=tf.int32)

            input_ids = hvd.allreduce(input_ids, average=False, name='barrier1')
            attention_mask = hvd.allreduce(attention_mask, average=False, name='barrier2')
            labels = hvd.allreduce(labels, average=False, name='labels')

            dataset = ({
                'input_ids': input_ids,
                'attention_mask': attention_mask
            }, labels)

            dataset = tf.data.Dataset.from_tensor_slices(dataset)
            dataset = dataset.shard(hvd.size(), hvd.rank())
            dataset = dataset.cache()
            dataset = dataset.batch(batch_size)
            dataset = dataset.prefetch(tf.data.AUTOTUNE)

        return dataset

    def prepare_model(self, model_name, use_case, input_shape, num_classes, **kwargs):
        # Try to get model url from TLT supported models
        model_info = get_model_info(model_name, 'tensorflow', use_case)
        if model_info != {}:
            fw_enum = list(model_info.keys())[0]
            model_name = model_info[fw_enum]['tensorflow']['feature_vector']
        if use_case == 'image_classification':
            model = tf.keras.models.Sequential([
                hub.KerasLayer(model_name, input_shape=input_shape),
                tf.keras.layers.Dense(num_classes, activation='softmax')
            ])
        elif use_case == 'text_classification':
            bert_config = BertConfig.from_pretrained(model_name, output_hidden_states=True)
            bert_model = TFBertModel.from_pretrained(model_name, config=bert_config, from_pt=True)

            dense_layer_dims = 1 if num_classes == 2 else num_classes

            input_ids = tf.keras.layers.Input(input_shape, dtype=tf.int32, name='input_ids')
            attention_mask = tf.keras.layers.Input(input_shape, dtype=tf.int32, name='attention_mask')
            bert_output = bert_model.bert(input_ids, attention_mask=attention_mask)[1]
            classifier = tf.keras.layers.Dense(dense_layer_dims, activation=None, name='classifier')(bert_output)

            model = tf.keras.Model(inputs=[input_ids, attention_mask], outputs=classifier)

        return model

    def launch_distributed_job(self, training_args: DistributedTrainingArguments):
        model = training_args.model
        optimizer = training_args.optimizer
        loss = training_args.loss

        # This is required if using intel-tensorflow==2.12.0
        optimizer = self._get_legacy_optimizer(optimizer)

        # Horovod: pin GPU to be used to process local rank (one GPU per process)
        gpus = tf.config.experimental.list_physical_devices('GPU')
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
        if gpus:
            tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')

        if training_args.scaling.lower() == 'weak':
            multiplier = np.sqrt(training_args.global_batch_size // training_args.batch_denom)
            optimizer.lr = optimizer.lr * multiplier
            batch_size = training_args.global_batch_size
        elif training_args.scaling.lower() == 'strong':
            optimizer.lr = optimizer.lr * hvd.size()
            batch_size = training_args.global_batch_size // hvd.size()

        if training_args.use_case == 'image_classification':
            hvd_optimizer = hvd.DistributedOptimizer(
                optimizer, backward_passes_per_step=5, average_aggregated_gradients=True)
        elif training_args.use_case == 'text_classification':
            hvd_optimizer = hvd.DistributedOptimizer(
                optimizer, backward_passes_per_step=1, average_aggregated_gradients=True)

        model.compile(
            loss=loss,
            optimizer=hvd_optimizer,
            metrics=['acc'],
            experimental_run_tf_function=False
        )

        warmup = 3
        if hvd.size() == 1:
            warmup = 1

        callbacks = []
        # Horovod: broadcast initial variable states from rank 0 to all other processes.
        callbacks.append(hvd.callbacks.BroadcastGlobalVariablesCallback(0))
        # Horovod: average metrics among workers at the end of every epoch.
        callbacks.append(hvd.callbacks.MetricAverageCallback())
        # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final accuracy.
        callbacks.append(hvd.callbacks.LearningRateWarmupCallback(
            initial_lr=optimizer.lr, warmup_epochs=warmup, verbose=1))

        # Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
        if hvd.rank() == 0:
            model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(filepath=os.path.join(
                os.environ['HOME'], 'model_checkpoints'), save_weights_only=False, monitor='val_acc',
                mode='max', save_best_only=True)
            callbacks.append(model_checkpoint_callback)

        # Horovod: write logs on worker 0.
        verbose = 1 if hvd.rank() == 0 else 0

        x_input_data = training_args.train_data
        y_target_data = None
        val_data = training_args.val_data

        # Prepare dataset for Hugging Face text classification
        if training_args.hf_bert_tokenizer:
            bert_tokenizer_name = training_args.hf_bert_tokenizer
            max_seq_length = training_args.max_seq_length
            tokenized_data, labels = prepare_huggingface_input_data(x_input_data, bert_tokenizer_name, max_seq_length)
            x_input_data = [tokenized_data['input_ids'], tokenized_data['attention_mask']]
            y_target_data = tf.convert_to_tensor(labels)

            if training_args.val_data:
                tokenized_val_data, val_labels = prepare_huggingface_input_data(training_args.val_data,
                                                                                bert_tokenizer_name, max_seq_length)
                val_data = ([tokenized_val_data['input_ids'], tokenized_val_data['attention_mask']],
                            tf.convert_to_tensor(val_labels))

        start = time.time()
        steps_per_epoch_per_worker = len(training_args.train_data) // batch_size
        steps_per_epoch_per_worker = steps_per_epoch_per_worker // hvd.size()
        if hvd.size() > 2:
            steps_per_epoch_per_worker += 1
        self.history = model.fit(
            x=x_input_data,
            y=y_target_data,
            validation_data=val_data,
            callbacks=callbacks,
            steps_per_epoch=steps_per_epoch_per_worker,
            epochs=training_args.epochs,
            initial_epoch=0,
            verbose=verbose
        )
        end = time.time()
        if hvd.rank() == 0:
            print("Total elapsed time in seconds = ", end - start)
            print("Total elapsed time in minutes = ", ((end - start) / 60))
            print("Total epochs = ", len(self.history.history['loss']))
            print("Time per epoch in seconds = ", ((end - start) / len(self.history.history['loss'])))
            print("Maximum validation accuracy = ", np.max(self.history.history['val_acc']))

    def _get_legacy_optimizer(self, optimizer):
        optimizer_config = optimizer.get_config()
        optimizer_name = optimizer_config['name']

        legacy_optimizer_class = locate('tensorflow.keras.optimizers.legacy.{}'.format(optimizer_name))

        if legacy_optimizer_class is None:
            # No matching legacy optimizer is found.
            return optimizer

        legacy_optimizer_config = legacy_optimizer_class().get_config()
        legacy_optimizer = legacy_optimizer_class.from_config(
            {k: v for k, v in optimizer_config.items() if k in legacy_optimizer_config}
        )

        return legacy_optimizer

    def load_saved_objects(self, saved_objects_dir):
        # Load the saved_model.pb
        model = tf.keras.models.load_model(filepath=saved_objects_dir, compile=False)

        # Load the optimizer and restore its state
        checkpoint = tf.train.Checkpoint(optimizer=tf.optimizers.Adam())
        checkpoint.restore(os.path.join(saved_objects_dir, 'saved_optimizer-1'))

        # Load the saved loss class name and instatiate the loss
        with open(os.path.join(saved_objects_dir, 'saved_loss'), 'rb') as f:
            loss_class, loss_args = dill.load(f)  # nosec: B301

        # load the dataset(s)
        train_data = tf.data.Dataset.load(os.path.join(saved_objects_dir, 'train_data'))
        try:
            val_data = tf.data.Dataset.load(os.path.join(saved_objects_dir, 'val_data'))
        except FileNotFoundError:
            val_data = None

        if loss_class is None:
            dataset = train_data.unbatch()
            dataset = list(dataset.as_numpy_iterator())
            labels = list()
            for _, label in dataset:
                labels.append(label)
            loss = tf.keras.losses.BinaryCrossentropy(from_logits=True) if len(set(labels)) == 2 else \
                tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
        else:
            loss = loss_class(**loss_args)

        return (model, checkpoint.optimizer, loss, train_data, val_data)