Spaces:
Configuration error
Configuration error
File size: 13,876 Bytes
a01ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#
import click
import inspect
import sys
from tlt.distributed import TLT_DISTRIBUTED_DIR
@click.command()
@click.option("--framework", "-f",
required=False,
default="tensorflow",
type=click.Choice(['tensorflow', 'pytorch']),
help="Deep learning framework [default: tensorflow]")
@click.option("--model-name", "--model_name",
required=True,
type=str,
help="Name of the model to use")
@click.option("--output-dir", "--output_dir",
required=True,
type=click.Path(dir_okay=True, file_okay=False),
help="Output directory for saved models, logs, checkpoints, etc")
@click.option("--dataset-dir", "--dataset_dir",
required=True,
type=click.Path(dir_okay=True, file_okay=False),
help="Dataset directory for a custom dataset, or if a dataset name "
"and catalog are being provided, the dataset directory is the "
"location where the dataset will be downloaded.")
@click.option("--dataset-file", "--dataset_file",
required=False,
type=str,
help="Name of a file in the dataset directory to load. Used for loading a .csv file for text "
"classification fine tuning.")
@click.option("--delimiter",
required=False,
type=str,
default=",",
help="Delimiter used when loading a dataset from a csv file. [default: ,]")
@click.option("--class-names", "--class_names",
required=False,
type=str,
help="Comma separated string of class names for a text classification dataset being loaded from .csv")
@click.option("--dataset-name", "--dataset_name",
required=False,
type=str,
help="Name of the dataset to use from a dataset catalog.")
@click.option("--dataset-catalog", "--dataset_catalog",
required=False,
type=click.Choice(['tf_datasets', 'torchvision', 'huggingface']),
help="Name of a dataset catalog for a named dataset (Options: "
"tf_datasets, torchvision, huggingface). If a dataset name is provided "
"and no dataset catalog is given, it will default to use tf_datasets for a TensorFlow "
"model, torchvision for PyTorch CV models, and huggingface datasets for HuggingFace models.")
@click.option("--epochs",
default=1,
type=click.IntRange(min=1),
help="Number of training epochs [default: 1]")
@click.option("--init-checkpoints", "--init_checkpoints",
required=False,
type=click.Path(dir_okay=True),
help="Optional path to checkpoint weights to load to resume training. If the path provided is a "
"directory, the latest checkpoint from the directory will be used.")
@click.option("--add-aug", "--add_aug",
type=click.Choice(['hvflip', 'hflip', 'vflip', 'rotate', 'zoom']),
multiple=True,
default=[],
help="Choice of data augmentation to be applied during training.")
@click.option("--ipex_optimize", "--ipex-optimize",
required=False,
type=click.BOOL,
is_flag=True,
help="Boolean option to optimize model with Intel Extension for PyTorch.")
@click.option("--distributed", "-d",
required=False,
type=click.BOOL,
is_flag=True,
help="Boolean option to trigger a distributed training job.")
@click.option("--nnodes",
required=False,
default=1,
type=click.IntRange(min=1),
help="Number of nodes to run the training job [default: 1]")
@click.option("--nproc_per_node", "--nproc-per-node",
required=False,
default=1,
type=click.IntRange(min=1),
help="Number of processes per node for the distributed training job [default: 1]")
@click.option("--hostfile",
required=False,
default=None,
type=click.Path(exists=True, dir_okay=False),
help="hostfile with a list of nodes to run distributed training.")
@click.option("--early-stopping", "--early_stopping",
type=click.BOOL,
default=False,
is_flag=True,
help="Enable early stopping if convergence is reached while training (bool)")
@click.option("--lr-decay", "--lr_decay",
type=click.BOOL,
default=False,
is_flag=True,
help="If lr_decay is True and do_eval is True, learning rate decay on the validation loss is applied at "
"the end of each epoch.")
@click.option("--use-horovod", "--use_horovod",
required=False,
type=click.BOOL,
is_flag=True,
help="Use horovod instead of default MPI")
@click.option("--hvd-start-timeout", "--hvd_start_timeout",
type=click.IntRange(min=1),
default=30,
help="Horovodrun has to perform all the checks and start the processes before the specified timeout. "
"The default value is 30 seconds. Alternatively, The environment variable HOROVOD_START_TIMEOUT can "
"also be used to specify the initialization timeout. Currently only supports PyTorch.")
def train(framework, model_name, output_dir, dataset_dir, dataset_file, delimiter, class_names, dataset_name,
dataset_catalog, epochs, init_checkpoints, add_aug, early_stopping, lr_decay, ipex_optimize, distributed,
nnodes, nproc_per_node, hostfile, use_horovod, hvd_start_timeout):
"""
Trains the model
"""
session_log = {} # Initialize an empty dictionary to store information about current training session
session_verbose = ""
session_log["model_name"] = model_name
session_log["framework"] = framework
session_log["epochs"] = epochs
session_log["dataset_dir"] = dataset_dir
session_log["output_directory"] = output_dir
session_verbose += "Model name: {}\n".format(model_name)
session_verbose += "Framework: {}\n".format(framework)
if dataset_name:
session_verbose += "Dataset name: {}\n".format(dataset_name)
session_log["dataset_name"] = dataset_name
if dataset_catalog:
session_verbose += "Dataset catalog: {}\n".format(dataset_catalog)
session_log["dataset_catalog"] = dataset_catalog
session_verbose += "Training epochs: {}\n".format(epochs)
if init_checkpoints:
session_verbose += "Initial checkpoints: {}\n".format(init_checkpoints)
session_log["init_checkpoints"] = init_checkpoints
if add_aug:
session_log["add_aug"] = add_aug
session_verbose += "Dataset dir: {}\n".format(dataset_dir)
if dataset_file:
session_verbose += "Dataset file: {}\n".format(dataset_file)
session_log["dataset_file"] = dataset_file
if class_names:
class_names = class_names.split(",")
session_verbose += "Class names: {}\n".format(class_names)
session_log["class_names"] = class_names
if early_stopping:
session_log["early_stopping"] = early_stopping
session_verbose += "Early Stopping: {}\n".format(early_stopping)
if lr_decay:
session_log["lr_decay"] = lr_decay
session_verbose += "lr_decay: {}\n".format(lr_decay)
session_verbose += "Output directory: {}\n".format(output_dir)
if distributed:
session_verbose += "Distributed: {}\n".format(distributed)
session_verbose += "Number of nodes: {}\n".format(nnodes)
session_verbose += "Number of processes per node: {}\n".format(nproc_per_node)
session_verbose += "hostfile: {}\n".format(hostfile)
session_log["distibuted"] = distributed
session_log["nnodes"] = nnodes
session_log["nproc_per_node"] = nproc_per_node
session_log["hostfile"] = hostfile
print(session_verbose, flush=True)
# Validate distributed inputs, if given
if distributed:
if hostfile is None:
# TODO: Logic to continute distributed training on single (current) node
sys.exit("Error: Specify the hostfile with \'--hostfile\' flag")
from tlt.models import model_factory
from tlt.datasets import dataset_factory
# Get the model
try:
model = model_factory.get_model(model_name, framework)
except Exception as e:
sys.exit("Error while getting the model (model name: {}, framework: {}):\n{}".format(
model_name, framework, str(e)))
# Get the dataset
try:
if not dataset_name and not dataset_catalog:
if str(model.use_case) == 'text_classification':
if not dataset_file:
raise ValueError("Loading a text classification dataset requires --dataset-file to specify the "
"file name of the .csv file to load from the --dataset-dir.")
if not class_names:
raise ValueError("Loading a text classification dataset requires --class-names to specify a list "
"of the class labels for the dataset.")
dataset = dataset_factory.load_dataset(dataset_dir, model.use_case, model.framework, dataset_name,
class_names=class_names, csv_file_name=dataset_file,
delimiter=delimiter)
else:
dataset = dataset_factory.load_dataset(dataset_dir, model.use_case, model.framework)
else:
dataset = dataset_factory.get_dataset(dataset_dir, model.use_case, model.framework, dataset_name,
dataset_catalog)
# TODO: get extra configs like batch size and maybe this doesn't need to be a separate call
if framework in ['tensorflow', 'pytorch']:
if 'image_size' in inspect.getfullargspec(dataset.preprocess).args: # For Image classification
dataset.preprocess(image_size=model.image_size, batch_size=32, add_aug=list(add_aug))
elif 'model_name' in inspect.getfullargspec(dataset.preprocess).args: # For HF Text classification
dataset.preprocess(model_name=model_name, batch_size=32)
else: # For TF Text classification
dataset.preprocess(batch_size=32)
dataset.shuffle_split()
except Exception as e:
sys.exit("Error while getting the dataset (dataset dir: {}, use case: {}, framework: {}, "
"dataset name: {}, dataset_catalog: {}):\n{}".format(dataset_dir, model.use_case, model.framework,
dataset_name, dataset_catalog, str(e)))
if ipex_optimize and framework != 'pytorch':
sys.exit("ipex_optimize is only supported for pytorch training\n")
# Train the model using the dataset
if framework == 'pytorch':
try:
model.train(dataset, output_dir=output_dir, epochs=epochs, initial_checkpoints=init_checkpoints,
early_stopping=early_stopping, lr_decay=lr_decay, ipex_optimize=ipex_optimize,
distributed=distributed, hostfile=hostfile, nnodes=nnodes, nproc_per_node=nproc_per_node,
use_horovod=use_horovod, hvd_start_timeout=hvd_start_timeout)
except Exception as e:
sys.exit("There was an error during model training:\n{}".format(str(e)))
# Test for tensorflow
else:
try:
model.train(dataset, output_dir=output_dir, epochs=epochs, initial_checkpoints=init_checkpoints,
early_stopping=early_stopping, lr_decay=lr_decay, distributed=distributed, hostfile=hostfile,
nnodes=nnodes, nproc_per_node=nproc_per_node, use_horovod=use_horovod)
except Exception as e:
sys.exit("There was an error during model training:\n{}".format(str(e)))
if distributed:
# Cleanup the saved objects
import os
for file_name in ["torch_saved_objects.obj", "hf_saved_objects.obj"]:
if file_name in os.listdir(TLT_DISTRIBUTED_DIR):
os.remove(os.path.join(TLT_DISTRIBUTED_DIR, file_name))
# Save the trained model
try:
log_output = model.export(output_dir)
except Exception as e:
sys.exit("There was an error when saving the model:\n{}".format(str(e)))
# Save the log file
try:
import os
import json
json_filename = os.path.join(log_output, "session_log.json")
session_log["log_path"] = log_output
json_object = json.dumps(session_log, indent=4)
with open(json_filename, "w") as outfile:
outfile.write(json_object)
except Exception as e:
sys.exit("There was an error when saving the session log file:\n{}".format(str(e)))
|