File size: 9,365 Bytes
a01ef8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import shutil
import yaml
import tensorflow as tf
import numpy as np
import time
from tlt.datasets import dataset_factory
from tlt.models import model_factory
from tlt.utils.types import FrameworkType
from PIL import Image


IMAGE_SIZE = 224


def collect_class_labels(dataset_dir):
    dataset = dataset_factory.load_dataset(dataset_dir=dataset_dir,
                                           use_case='image_classification',
                                           framework='tensorflow')
    return dataset.class_names


def quantize_model(output_dir, saved_model_dir, model):
    clean_output_folder(output_dir, 'quantized_models')

    quantization_output_dir = os.path.join(output_dir, 'quantized_models',
                                           "vision",
                                           os.path.basename(saved_model_dir))
    # Create a tuning workspace directory for INC
    root_folder = os.path.dirname(os.path.abspath(__file__))
    inc_config_file = os.path.join(root_folder, "config.yaml")

    # inc_config_file = 'vision/config.yaml'
    model.quantize(quantization_output_dir, inc_config_file)


def clean_output_folder(output_dir, model_name):
    folder_path = os.path.join(output_dir, model_name)
    if os.path.exists(folder_path):
        shutil.rmtree(os.path.join(output_dir, model_name))


def train_vision_wl(dataset_dir, output_dir, model="resnet_v1_50",
                    batch_size=32,
                    epochs=5, save_model=True, quantization=False, bf16=True):
    # Clean the output folder first
    clean_output_folder(output_dir, model)
    dict_metrics = {}
    #  Loading the model
    tstart = time.time()
    model = model_factory.get_model(model_name=model,
                                    framework=FrameworkType.TENSORFLOW)
    tend = time.time()
    print("\nModel Loading time (s): ", tend - tstart)
    # Load the dataset from the custom dataset path
    # Data loading and preprocessing #
    dataset = dataset_factory.load_dataset(dataset_dir=dataset_dir,
                                           use_case='image_classification',
                                           framework='tensorflow',
                                           shuffle_files=True)

    print("Class names:", str(dataset.class_names))
    dataset.preprocess(model.image_size, batch_size=batch_size,
                       add_aug=['hvflip', 'rotate'])
    dataset.shuffle_split(train_pct=.80, val_pct=.20)
    # Finetuning #
    tstart = time.time()
    history = model.train(dataset, output_dir=output_dir, epochs=epochs,
                          seed=10,
                          enable_auto_mixed_precision=bf16,
                          extra_layers=[1024, 512])
    tend = time.time()
    print("\nTotal Vision Finetuning time (s): ", tend - tstart)
    dict_metrics['e2e_training_time'] = tend - tstart

    metrics = model.evaluate(dataset)
    for metric_name, metric_value in zip(model._model.metrics_names, metrics):
        print("{}: {}".format(metric_name, metric_value))
        dict_metrics[metric_name] = metric_value
    print('dict_metrics:', dict_metrics)
    print('Finished Fine-tuning the vision model...')
    if save_model:
        saved_model_dir = model.export(output_dir)
    if quantization:
        print('Quantizing the model')
        quantize_model(output_dir, saved_model_dir, model)

    print("Done finetuning the vision model ............")
    return (model, history, dict_metrics)


def infer_vision_wl(model, image_location):
    image_shape = (model.image_size, model.image_size)
    image = Image.open(image_location).resize(image_shape)
    # Get the image as a np array and call predict while adding a batch
    # dimension (with np.newaxis)
    image = np.array(image)/255.0
    result = model.predict(image[np.newaxis, ...], 'probabilities')[0]
    return result


def infer_int8_vision_wl(model, image_location):
    image_shape = (IMAGE_SIZE, IMAGE_SIZE)
    image = Image.open(image_location).resize(image_shape)
    # Get the image as a np array and call predict while
    # adding a batch dimension (with np.newaxis)
    image = np.array(image)/255.0
    image = image[np.newaxis, ...].astype('float32')
    infer = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
    # result = model.predict(image[np.newaxis, ...])
    # result=model.predict(image[np.newaxis, ...], 'probabilities')[0]
    output_name = list(infer.structured_outputs.keys())
    result = infer(tf.constant(image))[output_name[0]][0]
    return result

def preprocess_dataset(dataset_dir, image_size, batch_size):
    """
    Load and preprocess dataset
    """
    dataset = dataset_factory.load_dataset(dataset_dir=dataset_dir,
                                           use_case='image_classification',
                                           framework='tensorflow',
                                           shuffle_files=False)
    dataset.preprocess(image_size, batch_size)
    class_dict = reverse_map(dataset.class_names)
    return dataset, class_dict


def reverse_map(class_names):
    class_dict = {}
    i = 0
    for c in class_names:
        class_dict[i] = c
        i = i + 1
    return class_dict

def load_model(model_name, saved_model_dir):
    vision_model = model_factory.load_model(model_name, saved_model_dir,
                                            "tensorflow",
                                            "image_classification")
    return vision_model

def run_inference_per_patient(model, patient_dict,class_names):
    results = {}
    class_dict = reverse_map(class_names)
    for key, value in patient_dict.items():
        print(key, '->', value)
        results[key] = {}
        for image in value:
            pred_prob = infer_vision_wl(model,image).numpy().tolist()
            infer_result_patient = [
                {
                    "label": image.split('/')[-2],
                    "pred": class_dict[np.argmax(pred_prob).tolist()],
                    "pred_prob": pred_prob
                }
            ]
            results[key][image.split('/')[-1]] = infer_result_patient
    print(results)
    return results
    

def run_inference(test_data_dir, saved_model_dir, class_labels,
                  model_name="resnet_v1_50", vision_int8_inference=False,
                  report="output.yaml"):
    # Load the vision model
    tstart = time.time()
    vision_model_dir = saved_model_dir
    test_dir = test_data_dir
    labels = class_labels
    predictions_report_save_file = report
    predictions_report = {}
    predictions_report["metric"] = {}
    predictions_report["results"] = {}
    # Load model
    vision_model = model_factory.load_model(model_name, vision_model_dir,
                                            "tensorflow",
                                            "image_classification")

    if vision_int8_inference:
        vision_int8_model = tf.saved_model.load(vision_model_dir)

    tend = time.time()
    print("\n Vision Model Loading time: ", tend - tstart)
    # Load dataset for metric evaluation
    dataset, class_dict = preprocess_dataset(test_data_dir,
                                             vision_model.image_size, 32)
    metrics = vision_model.evaluate(dataset)
    for metric_name, metric_value in zip(vision_model._model.metrics_names,
                                         metrics):
        print("{}: {}".format(metric_name, metric_value))
        predictions_report["metric"][metric_name] = metric_value
    tstart = time.time()
    for label in os.listdir(test_dir):
        print("Infering data in folder: ", label)
        fns = os.listdir(os.path.join(test_dir, label))
        for fn in fns:
            patient_id = fn
            fn = os.path.join(os.path.join(test_dir, label, fn))
            # ------------------------
            # call inference on vision WL
            # ------------------------
            if vision_int8_inference:
                result_vision = infer_int8_vision_wl(vision_int8_model, fn)
            else:
                result_vision = infer_vision_wl(vision_model, fn)
            pred_prob = result_vision.numpy().tolist()
            infer_result_patient = [
                {
                    "label": label,
                    "pred": class_dict[np.argmax(pred_prob).tolist()],
                    "pred_prob": pred_prob
                }
            ]
            predictions_report["label"] = labels
            predictions_report["label_id"] = list(class_dict.keys())
            predictions_report["results"][patient_id] = infer_result_patient
    with open(predictions_report_save_file, 'w') as file:
        _ = yaml.dump(predictions_report, file, )
    print("Vision inference time: ", time.time() - tstart)