Spaces:
Configuration error
Configuration error
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
# | |
# Copyright (c) 2022 Intel Corporation | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
import os | |
import pytest | |
import shutil | |
import tempfile | |
from click.testing import CliRunner | |
from pathlib import Path | |
from unittest.mock import MagicMock, patch | |
from tlt.tools.cli.commands.optimize import optimize | |
from tlt.utils.types import FrameworkType | |
def test_optimize(mock_get_model, model_name, framework): | |
""" | |
Tests the optimize commandand verifies that the expected calls are made | |
on the tlt model object. The call parameters also verify that the optimize command is able to properly identify | |
the model's name based on the directory and the framework type based on the type of saved model. | |
""" | |
runner = CliRunner() | |
tmp_dir = tempfile.mkdtemp() | |
model_dir = os.path.join(tmp_dir, model_name, '3') | |
output_dir = os.path.join(tmp_dir, 'output') | |
try: | |
os.makedirs(model_dir) | |
if framework == FrameworkType.TENSORFLOW: | |
Path(os.path.join(model_dir, 'saved_model.pb')).touch() | |
elif framework == FrameworkType.PYTORCH: | |
Path(os.path.join(model_dir, 'model.pt')).touch() | |
model_mock = MagicMock() | |
mock_get_model.return_value = model_mock | |
# Call the optimize command | |
result = runner.invoke(optimize, | |
["--model-dir", model_dir, "--output-dir", output_dir]) | |
# Verify that the expected calls were made | |
if framework == FrameworkType.TENSORFLOW: | |
mock_get_model.assert_called_once_with(model_name, framework) | |
assert model_mock.optimize_graph.called | |
# Verify the exit code | |
if framework == FrameworkType.TENSORFLOW: | |
assert result.exit_code == 0 | |
else: | |
assert result.exit_code == 1 | |
finally: | |
if os.path.exists(tmp_dir): | |
shutil.rmtree(tmp_dir) | |
def test_optimize_bad_model_file(model_name, model_file): | |
""" | |
Verifies that the optimize command fails if it's given a model directory that doesn't contain a saved_model.pb. | |
""" | |
runner = CliRunner() | |
tmp_dir = tempfile.mkdtemp() | |
model_dir = os.path.join(tmp_dir, model_name, '3') | |
output_dir = os.path.join(tmp_dir, 'output') | |
try: | |
os.makedirs(model_dir) | |
# Create the bogus model file | |
Path(os.path.join(model_dir, model_file)).touch() | |
# Call the optimize command with the bogus model directory | |
result = runner.invoke(optimize, | |
["--model-dir", model_dir, "--output-dir", output_dir]) | |
# Verify that we got an error about the unsupported model type | |
assert result.exit_code == 1 | |
assert "Graph optimization is currently only supported for TensorFlow saved_model.pb models." \ | |
in result.output | |
finally: | |
if os.path.exists(tmp_dir): | |
shutil.rmtree(tmp_dir) | |
def test_optimize_bad_model_dir(model_name, model_file, framework): | |
""" | |
Verifies that optimize command fails if it's given a model directory with a model name that we don't support | |
""" | |
runner = CliRunner() | |
tmp_dir = tempfile.mkdtemp() | |
model_dir = os.path.join(tmp_dir, model_name, '3') | |
output_dir = os.path.join(tmp_dir, 'output') | |
try: | |
os.makedirs(model_dir) | |
# Create the model file | |
Path(os.path.join(model_dir, model_file)).touch() | |
# Call the optimize command with the model directory | |
result = runner.invoke(optimize, | |
["--model-dir", model_dir, "--output-dir", output_dir]) | |
# Verify that we got an error about the unsupported model for the framework | |
assert result.exit_code == 1 | |
assert "An error occurred while getting the model" in result.output | |
assert "The specified model is not supported for {}".format(framework) in result.output | |
finally: | |
if os.path.exists(tmp_dir): | |
shutil.rmtree(tmp_dir) | |
def test_optimize_model_dir_does_not_exist(): | |
""" | |
Verifies that optimize command fails if the model directory does not exist | |
""" | |
runner = CliRunner() | |
tmp_dir = tempfile.mkdtemp() | |
model_dir = os.path.join(tmp_dir, 'resnet_v1_50', '3') | |
output_dir = os.path.join(tmp_dir, 'output') | |
try: | |
# Call the optimize command with the model directory | |
result = runner.invoke(optimize, | |
["--model-dir", model_dir, "--output-dir", output_dir]) | |
# Verify that we got an error model directory not existing | |
assert result.exit_code == 2 | |
assert "--model-dir" in result.output | |
assert "Directory '{}' does not exist".format(model_dir) in result.output | |
finally: | |
if os.path.exists(tmp_dir): | |
shutil.rmtree(tmp_dir) | |
def test_optimize_output_dir(mock_get_model): | |
""" | |
Verifies that the optimize command increments the output directory for the optimized model each time | |
the optimization command is called | |
""" | |
runner = CliRunner() | |
tmp_dir = tempfile.mkdtemp() | |
model_name = 'resnet_v1_50' | |
model_dir = os.path.join(tmp_dir, model_name, '3') | |
output_dir = os.path.join(tmp_dir, 'output') | |
try: | |
os.makedirs(model_dir) | |
Path(os.path.join(model_dir, 'saved_model.pb')).touch() | |
model_mock = MagicMock() | |
mock_get_model.return_value = model_mock | |
for i in range(1, 5): | |
# Call the optimize command | |
result = runner.invoke(optimize, | |
["--model-dir", model_dir, "--output-dir", output_dir]) | |
assert result.exit_code == 0 | |
# Check for an expected optimization output dir with the folder number incrementing | |
expected_optimize_dir = os.path.join(output_dir, "optimize", model_name, str(i)) | |
model_mock.optimize.called_once_with(model_dir, expected_optimize_dir) | |
model_mock.reset_mock() | |
finally: | |
if os.path.exists(tmp_dir): | |
shutil.rmtree(tmp_dir) | |